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Abstract. Evolutionary algorithms for optimiza-
tion of dynamic problems have recently received
increasing attention. Online control is a partic-
ularly interesting class of dynamic problems, be-
cause of the interactions between the controller
and the controlled system. In this paper, we report
experimental results on two aspects of the direct
control strategy in relation to a crop-producing
greenhouse. In the first set of experiments, we in-
vestigated how to balance the available computa-
tion time between population size and generations.
The second experiments were on different control
horizons, and showed the importance of this as-
pect for direct control. Finally, we discuss the re-
sults in the wider context of dynamic optimization.
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1. Introduction

Optimization problems from the real world
are often characterized by constraints, multiple
objectives, and dynamic properties. In particu-
lar, control problems are typically dynamic be-
cause of the interaction between the controller and
the controlled system. Furthermore, such prob-
lems usually contain time-varying components;
for instance, materials with temperature dependent
properties. This dynamic behavior poses an ex-
tra challenge to the optimization algorithm, be-
cause it must be able to cope with the changing
problem. Evolutionary computation is a promis-
ing approach to dynamic optimization problems,
since multiple solutions are kept in the population.
Hence, the population is likely to contain a good
solution to the problem after a change. Evolu-
tionary algorithms (EAs) for optimization of dy-

namic problems have been studied over the past
15 years. Several algorithms have been suggested
and tested, though mainly on artificial bench-
mark problems (for a survey see [1]). A well-
investigated type of artificial dynamic problem is
the so-called numerical problems, where the ob-
jective is to optimize a vector of real-valued num-
bers under the changing fitness landscape. A typ-
ical artificial problem consists of a few peaks that
change position, height, and width at certain inter-
vals. These artificial problems were recently scru-
tinized and found to have little in common with
realistic dynamic problems, in particular with con-
trol problems [10].

Real control problems are usually handled by
either an offline design process or an online con-
trol strategy. Tuning a PID controller is a typical
example of an offline problem. Here, the EA uses
a simulator to determine the best parameters for
the controller, which is later installed in the real
system. EAs have successfully been applied to
PID controller tuning on several occasions, e.g.,
[5], [3]. In online control, the simulator is repeat-
edly used to determine the best control signals dur-
ing the control period. Naturally, this approach
is heavily dependent on the computation time of
the simulator, and the rate at which control signals
must be provided. Hence, the approach is only fea-
sible for rather slowly changing problems where
the signal calculation is allowed to take several
seconds or even minutes. An example is green-
house control, where the settings for heating, ven-
tilation, CO2, and water injection are updated ev-
ery 15 minutes.

In this paper we focus on two aspects of on-
line greenhouse control with EAs. This study is
a follow-up investigation of the work presented in
[6]. In the previous study we explored trade-offs



between population size and number of genera-
tions between problem updates. Furthermore, we
investigated two fitness functions and compared
two setups for total number of evaluations. These
investigations were carried out using a rather sim-
ple greenhouse simulator that did not model im-
portant aspects such as wind cooling, energy loss
through the ground, and steam density. In this
study, we have vastly improved the greenhouse
simulator to include these aspects and several oth-
ers [9]. To examine the new simulator, we ex-
tended our investigations regarding trade-offs be-
tween population size and number of generations
between problem changes. The new setup in-
cludes a more extreme setting and a near-optimal
solution. Additionally, we investigated the role of
the control horizon length, which is the number of
simulated time-steps used in the determination of
the control signals. Naturally, the control horizon
influences the computation time of the simulator.
However, it may also influence the control perfor-
mance, because the prediction precision decreases
with longer look-ahead.

The paper is organized as follows: Section 2
explains the fundamental concepts of direct con-
trol with EAs. In Section 3, we describe the green-
house simulator. The experimental setup and re-
sults are covered in Section 4. Finally, Section
5 contains a discussion of the results and general
conclusions from this study.

2. Direct control with EAs

A control problem is often modeled by the in-
teractions between the controller, the system, and
the surrounding environment (see Fig. 1). Here,
vectorx(t) represents the internal state of the sys-
tem at timet, v(t) is the environment state,u(t)
denotes the control signal, andy(t) is the output
from the system.
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Figure 1. Model for controller, system, and en-
vironment

The change in system state is usually modeled
by a number of difference equations of the form:

xi(t + h) = xi(t) + ∆xi(u, x, v, t, h) (1)

wherexi is thei-th system variable inx, ∆xi(·) is
the update function,t is the time,h is the length
of a time-step, andu, x, andv are the control sig-
nals, the system state, and the environment state
of previous time-steps (sometimes several steps in
the past). Real systems are often described by a set
of non-linear differential equations. In these cases,
an approximation method, such as Runge-Kutta, is
used as the update function∆xi(·).

The online control strategy used here is called
“direct control” [4], in which the population en-
codes the real-valued control signals1. As men-
tioned in the introduction, the control signals must
be updated at certain intervals. Hence, only a lim-
ited number of evaluations is possible between up-
dates of the control signals. However, the num-
ber of evaluations (#ev) can be balanced between
population size (ps) and number of generations
(gen), i.e., #ev = ps · gen. For instance,200
evaluations can be assigned as eitherps = 200,
gen = 1 or ps = 25, gen = 8. Another impor-
tant aspect of direct control is the control horizon
(CH), which is used in the evaluation of candidate
solutions. The fitness of a solution is determined
by its control performance forCH time-steps into
the future. The best control setting is then used to
control the real system for one time-step. In pseu-
docode, the direct control algorithm is as follows:

Direct control
Initialize population of sizeps

while(control period not over){
Reset best control setting

for (i=0; i < gen; i++ ) {
Crossover and mutation
Evaluate each solution forCH steps
Selection
Store best control setting

}
Let best setting control one step

}
Direct control shares many properties with the

control engineering approach known as general-
ized predictive control (GPC) [2]. However, GPC
is not easily applied to non-linear problems, be-
cause the determination of the control signals, in
this case, relies on minimization of a multimodal
function, which is generally not possible with tra-
ditional engineering techniques.

1In [4], the technique is called “direct optimal control”;
however, “optimal” is a bit misleading.



3. The greenhouse control problem

The crop-producing greenhouse is modeled as
illustrated in Fig. 1. The control, system, and en-
vironment variables are listed in Table 1.

Table 1. Control, system, and environment
variables in the greenhouse

Description Var.

C
on

tr
ol

Heating [W/m2] uheat

Ventilation [m3/(m2 · h)] uvent

CO2 injection [g/(m2 · h)] uCO2

Water injection [g/(m2 · h)] uwater

S
ys

te
m

Indoor steam density [g/m3] xsteam

Indoor air temperature [◦C] xatemp

Indoor CO2 concentration [ppm] xCO2

Accumulated biomass [g/m2] xbiom

Accumulated profit [DKK/m2] xprofit

Condensation on glass [g/m2] xcond

E
nv

iro
nm

en
t

Outdoor sunlight intensity [W/m2] vsun

Outdoor air temperature [◦C] vatemp

Outdoor ground temperature [◦C] vgtemp

Relative humidity [% r.H.] vRH

Wind speed [m/s] vwind

Outdoor CO2 concentration [ppm] vCO2

Price of heating [DKK/(W·h)] vPheat

Price of CO2 [DKK/kg] vPCO2

Price of tomatoes [DKK/kg] vPtom

The greenhouse is controlled by four variables
for heating (uheat), ventilation (uvent), injection
of artificial CO2 (uCO2), and injection of water
(uwater). The range of these control variables are
as follows: uheat ∈ [0, 150], uvent ∈ [0, 100],
uCO2 ∈ [0, 10], anduwater ∈ [0, 100]. The change
in greenhouse state is modeled by six non-linear
differential equations. The simulator is based on a
German description [7]. Unfortunately, the green-
house simulator is too complex to describe in this
paper, but a complete specification is available in
English in [9].

The fitness of a solutions at timet is calculated
as the profit achieved minus a penaltyp:

Fit(s, t) =
t+CH∑

j=t

∆xprofit(j)− p(j) (2)

where

p(j) =





10 · (16− xatemp(j)) xatemp(j) < 16
10 · (xatemp(j)− 35) xatemp(j) > 35
0 otherwise

The profit is equal to the income from the pro-
duced crops minus the expenses to heating and

CO2 (Eq. 29 in [9]). The penalty is enforced to
avoid damage to the crops and to ensure that the
indoor air temperature is kept in the optimal range
for growth.

Real weather data from the Aarslev measur-
ing station on the island Fyn, Denmark, was
used for the environment variables sunlight inten-
sity (vsun), outdoor air temperature (vatemp), out-
door ground temperature (vgtemp), relative humid-
ity (vRH ), and wind speed (vwind). The remain-
ing environemnt variables were kept constant to
vCO2 = 340, vPheat = 0.0002, vPCO2 = 4.0,
andvPtom = 12.0. The weather data can be ob-
tained for a small fee from the Danish Meteoro-
logic Institute; see [9] for further information. In
this study, we simulated the first week of May. The
weather data is illustrated in Fig. 2. As stated ear-
lier, direct control determines a solution’s perfor-
mance by simulating a number of steps into the
future. In practice, this includes simulating the
weather, or rather, predicting the weather in the
control horizon. Weather prediction is generally
difficult; however, a simple scheme is to assume
the weather to be fixed during the control horizon
(few hours).
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Figure 2. Weather data for the first week of
May



4. Experiments and results

The simple EA encoded the four control sig-
nals as a real-valued vector. New solutions were
created using Gaussian mutation and a variant of
arithmetic crossover with one weight per variable.
All weights except one were randomly assigned 0
or 1, and the remaining weight was set to a random
value between 0 and 1. Binary tournament selec-
tion was applied. The algorithm used the follow-
ing parameters: probability of crossoverpc = 0.9,
probability of mutationpm = 0.5, and variance
σ = 0.01, which was scaled by the length of each
control variable’s interval. Each solution was eval-
uated by simulatingCH time-steps using the con-
trol setting encoded in the genome. The profit
achieved in each step was recorded and used to
calculate the fitness (Eq. 2).

Two sets of experiments were conducted. First,
we investigated five trade-offs between population
size and number of generations. The trade-offs
(ps, gen) were (200, 1), (100, 2), (50, 4), (25, 8),
and (10, 20). Second, we tested six control hori-
zons (CH) of 1, 2, 3, 4, 8, and 20 time-steps. Each
experiment was repeated 30 times.

Fig. 3 illustrates the profit per m2 in DKK for
the five trade-offs usingCH = 4. The graphs
clearly show that the trade-off (10, 20) is the best.
Furthermore, the order of the trade-offs shows
an evident relationship between performance and
number of generations – few generations lead to
low performance. Hence, the available evaluations
are best utilized with a low population size and
many generations between problem updates. In
addition to the mentioned trade-offs, we obtained
a near-optimal solution solution using 10000 eval-
uations withps = 50 and gen = 200. The
(10,20)-trade-off was, in fact, very close to the
near-optimal solution.

The control signalsuheat anduCO2 for the best
setting (10, 20) and the worst (200, 1) are dis-
played in Fig. 4. The difference in performance is
closely related to these variables, because profit is
easily lost on sub-optimal control of heating and
CO2 injection. At night the temperatures drop,
which requires heating to avoid damage to the
crops. At daytime the sunlight permits growth,
which can be augmented by injection of additional
CO2. The best control strategy (Fig. 4, upper
graph) properly adjusted the control to follow the
day and night phases. The worst strategy failed
to turn off heat at daytime, and valuable CO2 was
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Figure 3. Population size vs. generations.
Control horizon of 4 steps. Average of 30 runs

wasted during the night where no growth was pos-
sible because of the absent sunlight.
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Figure 4. Example of heating and CO 2 injection
for best control (upper graph) and worst con-
trol (lower graph) with a control horizon of 4
steps

In the second set of experiments, we investi-
gated the effect of varying the control horizon. We
tested six horizons having 1, 2, 3, 4, 8, and 20
time-steps. Fig. 5 shows the results from the 1,
2, 4, and 20 horizons using the (10, 20)-trade-



off (to keep the graph readable, 3 and 8 are not
shown). A control horizon of 20 time-steps is the
best, though only marginally better than a hori-
zon of 8 steps. The profit achieved in the re-
maining four horizon decreases according to the
look-ahead. Hence, a control horizon of at least
8 steps yields high profit, a horizon of 4 steps
leads to a reasonable good profit, and only a few
steps give rather low profit. The explanation for
the significant difference between the worst per-
forming setting (CH = 1) and the best setting
(CH = 20) is found by examining the control sig-
nals. Fig. 6 displays ventilation (uvent) and CO2

injection (uCO2) for CH = 1 andCH = 20. The
graph on ventilation shows that two general con-
trol strategies exist. The first strategy is used when
CH = 1. Here, the EA sets ventilation high at day-
time. This will require large investment in heating
during night, but will utilize the free CO2 in the
environment better. The second strategy appears
when CH = 20. In this strategy, ventilation is
low, which saves some heating, but makes CO2

injection necessary. The additional profit achieved
by the 20-step controller is mainly related to the
achieved temperature and indoor CO2 level (Eq.
25 in [9]), which can be seen by thoroughly exam-
inating the control signals and greenhouse states of
both settings. Naturally, the two different control
strategies emerge as a result of the control hori-
zon, but here the CO2 level plays an important role
too. The second strategy appears because the long
look-ahead allows the controller to discover the
long-term effect of growth, i.e., that the photosyn-
thesis can transforms more CO2 than achievable
by ventilation alone. Hence, additional growth
is possible by injecting artificial CO2. The short
look-ahead of the first strategy does not allow the
controller to discover the long-term effects. Thus,
ventilation is used because it will provide free CO2

from the environment.

5. Discussion and conclusions

In this paper, we investigated two important
aspects of direct control with evolutionary algo-
rithms. Our experiments show that the available
number of evaluations is best invested using a low
population size and many generations between up-
dates of the problem. Applying this result essen-
tially turns the dynamic problem into a series of
related static problems. For instance, the combina-
tion of 10 individuals and 20 generations performs
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Figure 5. Profit per m 2 for different control
horizons with 10 individuals and 20 genera-
tions. Average of 30 runs
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Figure 6. Example of ventilation and CO 2 injec-
tion for different control horizons (10 individu-
als, 20 generations)

significantly better than a population of 25 individ-
uals and 8 generations. This is surprising because
a population of 10 individuals is generally consid-
ered to be insufficient for most static problems.
Interestingly, a long static period (20-50 genera-
tions) between problem updates has been the pre-
ferred setting in most investigations on artificial
dynamic problems. Furthermore, this observation



confirms the preliminary results carried out in an
earlier investigation conducted by the first author
of this paper [8]. Regarding future work, the gen-
eral trend in the trade-off experiments suggests to
test even more extreme settings. In this context,
a comparison with other optimization techniques,
such as particle swarm optimization and simulated
annealing, may be in place.

Our second series of experiments underlined
the importance of choosing an appropriate con-
trol horizon. Interestingly, two very different con-
trol strategies emerged. The first strategy set-
tled on high ventilation, much heating, low CO2

injection, and low water injection. This strat-
egy occurred when the control horizon was short
(one time-step). The second strategy was nearly
the opposite, i.e., low ventilation, medium heat-
ing, high CO2 injection, and high water injec-
tion. This rather surprising difference is related to
the long-term effects of growth, such as the CO2-
consumption by the plants. A control horizon of
only one step does not reveal this, because the in-
door CO2 level does not drop drastically from one
step to the next. Hence, high ventilation gives free
CO2 from the environment, which is cheaper than
augmenting it artificially. An interesting ques-
tion to ask in this context is would it be possible
to switch to the better second strategy during the
day? A possible answer is that the control setting
corresponding to strategy two is more or less the
opposite of strategy one. Hence, a switch would
require a “jump” from one end of the search space
to the other. Furthermore, following strategy one
for a number of steps may actually render strat-
egy two less profitable, because thesearch itself
changes the problem; hence, the greenhouse state
could be different. In a theoretical EA-context,
this suggests multiple optima intime rather than
in space. Further analysis of the greenhouse state
and control traces may shed some light on these
matters.
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