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Abstract. Population diversity is undoubtably a key issue in the per-
formance of evolutionary algorithms. A common hypothesis is that high
diversity is important to avoid premature convergence and to escape
local optima. Various diversity measures have been used to analyze al-
gorithms, but so far few algorithms have used a measure to guide the
search.
The diversity-guided evolutionary algorithm (DGEA) uses the well-known
distance-to-average-point measure to alternate between phases of explo-
ration (mutation) and phases of exploitation (recombination and selec-
tion). The DGEA showed remarkable results on a set of widely used
benchmark problems, not only in terms of fitness, but more important:
The DGEA saved a substantial amount of fitness evaluations compared
to the simple EA, which is a critical factor in many real-world applica-
tions.

1 Introduction

A major problem in evolutionary algorithms (EAs) is that simple EAs have a
tendency to converge to local optima. This premature convergence is caused by
several algorithmic features, particularly selection pressure and too high gene
flow between population members. First, a high selection pressure will quickly
fill the population with clones of the better fit individuals, simply because their
survival probability is too high compared to intermediate fit solutions. Diver-
sity declines after a short while, and, because the population consists of similar
individuals, the algorithm will have difficulties escaping the local optimum rep-
resented by the population. However, lowering the selection pressure is rarely an
option because this will often lead to an unacceptable slow convergence speed.
Second, high gene flow is often determined by the population structure. In sim-
ple EAs any individual can mate with any other individual. Consequently, genes
spread fast throughout the population and the diversity drops quickly with fit-
ness stagnation as a prevalent outcome.

Several studies have been carried out with the conflicting goals of maintaining
a diversity that allows rapid convergence and still avoid premature convergence.
Most studies fall in one of the following three categories:

1. Complex population structures to lower gene flow, e.g., the diffusion model
[1, C6.3], the island model [1, C6.4], the multinational EA [2], and the
religion-based EA [3].



2. Specialized operators to control and assist the selection procedure, e.g.,
crowding [4], deterministic crowding [5], and sharing [6].

3. Reintroduction of genetic material, e.g., random immigrants [7], mass ex-
tinction models [8], [9], and [10].

Diversity is undoubtably closely related to the performance of evolutionary
algorithms, especially when attempts are made to overcome the problems of
avoiding premature convergence and escaping local optima. Maintaining high
diversity is particulary important for optimization of dynamic and multiobjec-
tive problems. For dynamic problems high diversity increases the chances of
relocating the peak after a change in the landscape, simply because the pop-
ulation covers a larger part of the search space. Algorithms for multiobjective
optimization seek to report many tradeoffs between the conflicting objectives.
Hence, higher diversity allows the algorithm to discover a larger part of the
so-called Pareto front and thus report multiple tradeoffs between the objectives.

Diversity measures are traditionally used to analyze evolutionary algorithms
rather than guide them. However, diversity measures have been used to control
EAs in at least three studies. The Diversity-Control-Oriented Genetic Algorithm
[11] use a diversity measure based on Hamming distance to calculate a survival
probablility for the individuals. A low Hamming distance between the individ-
ual and the current best individual is translated into a low survival probability.
Hence, diversity is preserved through the selection procedure. Another approach
is the Shifting-Balance Genetic Algorithm [12]. The SBGA calculates a so-called
containment factor between two subpopulations, which is based on Hamming
distances between all members of the two populations. The distance is calcu-
lated between each member of population A and all members of population B.
The factor determines the ratio between individuals selected on fitness and indi-
viduals selected to increase the distance between the two populations. A third,
and more distantly related, approach is the Forking GA, which uses specialized
diversity measures to turn a subset of the population into a subpopulation [13].
Two variants of the Forking GA exists. The first variant operates on the geno-
type, whereas the second type base the division on distances in the search space
(on the phenotype).

2 The Diversity-Guided EA

The idea behind the DGEA is simple. Unlike most other EAs the DGEA uses a
diversity measure to alternate between exploring and exploiting behavior. To use
a measure for this purpose it has to be robust with respect to i) the population
size, ii) the dimensionality of the problem, and iii) the search range of each of
the variables. An immediate measure for N -dimensional numerical problems is
the “distance-to-average-point” measure defined as:

diversity(P ) =
1

|L| · |P | ·
|P |∑

i=1

√√√√
N∑

j=1

(sij − sj)
2



where |L| is the length of the diagonal1 in the search space S ⊆ RN , P is the
population, |P | is the population size, N is the dimensionality of the problem,
sij is the j’th value of the i’th individual, and sj is the j’th value of the average
point s. The pseudocode for the DGEA is listed in Fig. 1.

DGEA main

t = 0

Initialize population P (0)

Evaluate population P (0)

mode = "Exploit"

while(not(termination condition)) {
t = t+1

if(diversity(P (t))< dlow)

mode = "Explore"

elseif(diversity(P (t))> dhigh)

mode = "Exploit"

if(mode == "Exploit")

Select next generation P (t) from P (t− 1)

Recombine P (t)

else

Mutate P (t)

Evaluate population P (t)

}

Fig. 1. Pseudocode for the DGEA.

The DGEA applies diversity-decreasing operators (selection and recombina-
tion) as long as the diversity is above a certain threshold dlow. When the diversity
drops below dlow the DGEA switches to diversity-increasing operators (muta-
tion) until a diversity of dhigh is reached. Hence, phases with exploration and
phases with exploitation will occur (see Fig. 2). Theoretically, the DGEA should
be able to escape local optima because the operators will force higher diversity
regardless of fitness.

If dlow = dhigh the algorithm will maintain a diversity close to the given
threshold value, which is particulary useful for dynamic and multiobjective op-
timization tasks.

An important issue is to apply a mutation operator that rather quickly
increases the distance-to-average-point measure. Otherwise, the algorithm will
stay in “explore”-mode for a long time. A straightforward idea for a measure-
increasing mutation operator is to use the average point of the population to
calculate the direction of each individual’s mutation. The individual is then mu-
tated with the Gaussian mutation operator, but now with a mean directed away

1 Assuming that each search variable xk is in a finite range, i.e., xkmin ≤ xk ≤ xkmax.
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Fig. 2. Phases in the DGEA. The boxes denote the search space, the dotted circles
indicate the diversity and position of the population. The mode is shown as the ver-
tical text between the pictures, i.e. exploitation lowers the diversity in picture 1 and
transforms it into picture 2.

from the average point (see Fig. 3). The purpose of this mutation operator is
to force the individuals away from the population center. Preliminary results
indicated that scaling the normalized direction vector by 0.001 turned out to
give the best results.

Search space

Average point

Fig. 3. Directed mutation in the DGEA.

3 Experiments and Results

The experiments were performed using real-valued encoding, a population size
of 400 individuals, binary tournament selection, and an elitism of 1 individ-
ual. Probability of mutating an entire genome was pm = 0.75 and probability
for crossover was pc = 0.9. The compared algorithms all use variants of the



standard Gaussian mutation operator (see below for further details). The mu-
tation operator scales the randomly generated numbers by 20% of the length of
the search intervals, which is just to make the operator problem independent.
The algorithms use an arithmetic crossover with one weight for each variable.
All weights except one are randomly assigned to either 0 or 1. The remaining
weight is set to a random value between 0 and 1. In preliminary experiments
this hybrid between uniform and arithmetic crossover showed better performance
than traditional uniform and arithmetic crossover. Two sets of experiments were
conducted: i) the traditional comparison between different algorithms and ii)
experiments on diversity.

3.1 Traditional Optimization

The algorithms used in the comparison are the “standard EA” (SEA), the self-
organized criticality EA (SOCEA), the cellular EA (CEA), and the diversity-
guided EA (DGEA). They all use the above parameters. The SEA uses Gaussian
mutation with zero mean and variance σ2 = 1/

√
t + 1. The SOCEA is a standard

EA with non-fixed and non-decreasing variance σ2 = POW (10), where POW (α)
is the power-law distribution2. The purpose of the SOC-mutation operator is to
introduce many small, some mid-sized, and a few large mutations. The effect of
this simple extension is quite outstanding considering the effort to implement it
(one line of code). The reader is referred to [10] for additional information on
the SOCEA. Further, the CEA uses a 20×20 grid with wrapped edges. The grid
size corresponds to the 400 individuals used in the other algorithms. The CEA
uses Gaussian mutation with variance σ2 = POW (10), which allows comparison
between the SOCEA and this version of the CEA. Mating is performed between
the individual at a cell and and a random neighbor from the four-neighborhood.
The offspring replaces the center individual if it has a better fitness than the
center individual. Finally, the DGEA uses the Gaussian mutation operator with
variance σ2 = POW (1) and mean calculated as described in Sect. 2. The diver-
sity boundaries were set to dlow = 5 · 10−6 and dhigh = 0.25, which proved to be
good settings in preliminary experiments.

The algorithms were compared using four standard benchmark problems.
Each algorithm was tested on three variants of the problems; a 20 dimensional,
a 50 dimensional, and a 100 dimensional. The number of generations was set to
50 times the dimensionality of the test problem, i.e., 20D = 1000 generations,

2 Power-law distributed numbers can be generated by x = 1/u1/α, where u ∼ U(0, 1)
is uniformly distributed, and α is a parameter determining the shape of the distri-
bution. Another approach used in [10] is to log the avalanche sizes in the so-called
sandpile model [14].



50D = 2500 generations, and 100D = 5000 generations. The four (minimization)
problems are:

Ackley F1(x) = 20 + e− 20 exp


−0.2

√√√√ 1
n

n∑

i=1

x2
i


−

exp

(
1
n

n∑

i=1

cos(2π · xi)

)
where − 30 ≤ xi ≤ 30

Griewank F1(x) =
1

4000

n∑

i=1

(xi − 100)2 −
n∏

i=1

cos
(

xi − 100√
i

)
+ 1

where − 600 ≤ xi ≤ 600

Rastrigin F1(x) =
n∑

i=1

(x2
i − 10 cos (2πxi) + 10) where − 5.12 ≤ xi ≤ 5.12

Rosenbrock F1(x) =
n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2) where − 100 ≤ xi ≤ 100

The results listed in Table 1 clearly show that the DGEA outperforms the
other algorithms by several magnitudes. In preliminary tests the DGEA contin-
ued to improve the fitness at the end of the fixed number of generations. Hence,
better fitness was obtained if the DGEA ran until it stagnated, which is here
defined to be 500 generations without fitness improvement. The results for this
optimization are listed in the column denoted DGEA*.

From the pseudocode listed in Fig. 1 it seems that the DGEA should be
somewhat faster than other algorithms, because the evolutionary operators are
used less frequently (although the diversity calculation might be more expen-
sive). Table 2 lists the runtime for the tested algorithms. According to these
experiments the DGEA uses less time than even the simple standard EA.

3.2 Investigations on Diversity

Low diversity is often blamed for being the main reason for premature conver-
gence. The principal argument is that a population of clones is likely to get
trapped in a local optimum. However, low diversity might increase the chances
of producing fitter offspring because the population will be located in the vicin-
ity of an optimum. Table 3 shows the average diversity and mode for each test
problem. The data points are recorded at each fitness improvement after the first
period of fitness stagnation, which is defined to be 20 consecutive generations
with no fitness improvement3.

3 This is to eliminate the noise in the beginning of a run.



Table 1. Average fitness of the SEA, the SOCEA, the CEA, and the DGEA. 20D
problems were optimized for 1000 generations, 50D for 2500, and 100D for 5000 gener-
ations. The results in the column DGEA* were obtained by running the DGEA until
the best fitness was constant for 500 generations.

Problem SEA SOCEA CEA DGEA DGEA*

Ackley 20D 2.49431 0.63380 0.23972 8.05E-4 3.36E-5

Ackley 50D 2.87039 1.52580 0.65169 4.61E-3 2.52E-4

Ackley 100D 2.89336 2.22080 1.14013 0.01329 9.80E-4

Griewank 20D 1.17195 0.93078 0.64280 7.02E-4 7.88E-8

Griewank 50D 1.61642 1.14741 1.03284 4.40E-3 1.19E-3

Griewank 100D 2.25001 1.62948 1.17907 0.01238 3.24E-3

Rastrigin 20D 11.12678 2.87524 1.25016 2.21E-5 3.37E-8

Rastrigin 50D 44.67488 22.46045 14.22400 0.01664 1.97E-6

Rastrigin 100D 106.21298 86.36449 58.38013 0.15665 6.56E-5

Rosenbrock 20D 8292.320 406.490 149.056 96.007 8.127

Rosenbrock 50D 41425.674 4783.246 1160.078 315.395 59.789

Rosenbrock 100D 91250.300 30427.636 6053.870 1161.550 880.324

Table 2. Milliseconds used by the SEA, the SOCEA, the CEA, and the DGEA. Av-
erage of 100 runs with 5000 generations on each of the four 100D problems.

Problem SEA SOCEA CEA DGEA

Ackley 100D 1128405 1528864 2951963 864316

Griewank 100D 1171301 1562931 3656724 969683

Rastrigin 100D 1124925 1513691 2897793 819691

Rosenbrock 100D 1087615 1496164 2183283 883811

Total 4512246 6101650 11689763 3537501

Percentage 100% 135.2% 259.1% 78.4%

Two interesting conclusions can be drawn from the results in Table 3. First,
the diversity appears to be surprisingly low when improvement occurs4. Second,
almost no improvement occurs during the exploration phases. This is particulary
interesting because it can help save a substantial amount of fitness evaluations
during the exploration periods – an important feature for time-consuming eval-
uation of real-world problems. A variant (DGEA2) without evalution during
exploration was investigated to see if it was possible to save fitness evaluations.
The optimization results and the percentage of evaluations used by DGEA2
compared to DGEA and SEA are listed in Table 4. It should be noted that
the DGEA2 uses a special kind of elitism during the explorative phases. In this
elitism operator the best individual from the previous exploit-phase overwrites
a random individual in the population, whereas the worst individual is over-

4 The range of the diversity measure is 0 to 0.5.



Table 3. Average diversity and current mode for the DGEA after first stagnation
period. Data points are recorded when fitness improvement is detected, i.e., 100% in
the Exploit column means that all improvements occured in Exploit mode. Each row
is the average of 100 runs.

Problem Diversity Exploit Explore

Ackley 20D 0.000388 100.00% 0.00%

Ackley 50D 0.000764 100.00% 0.00%

Ackley 100D 0.001082 100.00% 0.00%

Griewank 20D 0.000253 100.00% 0.00%

Griewank 50D 0.000662 100.00% 0.00%

Griewank 100D 0.000932 100.00% 0.00%

Rastrigin 20D 0.002056 100.00% 0.00%

Rastrigin 50D 0.002379 100.00% 0.00%

Rastrigin 100D 0.002817 100.00% 0.00%

Rosenbrock 20D 0.000601 99.99% 0.01%

Rosenbrock 50D 0.001134 99.91% 0.09%

Rosenbrock 100D 0.001562 99.91% 0.09%

written during the exploitation phases. This special scheme is used to avoid the
evaluation of individuals during the explorative phases.

Table 4. Average fitness of DGEA, average fitness of DGEA2, and number of fitness
evaluations in percentage used by DGEA2 compared to DGEA and SEA. Number of
generations are: 20D = 1000 generations, 50D = 2500, and 100D = 5000 generations
(same as Table 1).

Fitness Evaluations in DGEA2

Problem DGEA DGEA2 vs. DGEA vs. SEA

Ackley 20D 8.05E-4 1.01E-3 70.1% 64.0%

Ackley 50D 4.61E-3 4.36E-3 74.3% 67.9%

Ackley 100D 0.01329 0.01311 77.0% 70.5%

Griewank 20D 7.02E-4 1.11E-3 94.2% 86.7%

Griewank 50D 4.40E-3 3.96E-3 94.8% 87.3%

Griewank 100D 0.01238 9.94E-3 95.4% 87.9%

Rastrigin 20D 2.21E-5 6.88E-4 58.6% 53.2%

Rastrigin 50D 0.01664 0.03699 61.9% 56.3%

Rastrigin 100D 0.15665 0.15613 64.1% 58.4%

Rosenbrock 20D 96.007 86.891 89.9% 82.7%

Rosenbrock 50D 315.395 295.680 90.3% 83.0%

Rosenbrock 100D 1161.550 758.040 90.5% 83.2%

Average 80.1% 73.4%



4 Conclusions

The experiments revealed a number of interesting features of the DGEA in rela-
tion to optimization tasks. First, the DGEA outperformed the other algorithms
by several magnitudes on all test problems – it is clearly capable of escaping local
optima. Second, the EA part (crossover, selection, and mutation) of the DGEA
has lower running time than the standard EA, which again has lower running
time than most other EAs. Third, the number of fitness evaluations may be
reduced by approximately 25% compared with the standard EA, because the
fitness is constant during the explorative phases. Reducing fitness evaluations is
highly desireable for real-world applications, because the evaluation is often the
time-critical factor in such applications. However, the results showed some vari-
ation in the reduction percentages, which indicates that this could be problem
dependent.

In a more general context this study show the importance of both high and
low diversity in optimization. High diversity allows the algorithm to escape local
optima whereas low diversity ensures progress when fine-tuning the solutions.

Future work includes testing various variants of the algorithm. For instance,
annealing the diversity thresholds dlow and dhigh could lead to improvements,
because it may be an advantage to decrease dlow near the end of the optimization.
Further, investigations on a set of real-world problems are necessary to verify the
results in a more realistic context. A number of system identification problems
from control engineering are currently being investigated. Preliminary results
from these studies are very encouraging.
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