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Evolution of controllers by means of symbiosis

Mads O. Sgrensen and Jacob F. Qvortrup

Abstract— This study experimented with
evolving controllers by assigning a new per-
spective to EA’s - inspired by symbiosis. Dif-

ferent concepts of symbiosis were implemented

and tested. This framework, added to the
ordinary algorithms concerning evolving con-
trollers, had a significant effect on perfor-
mance, mainly because of the extended in-
teraction between the individuals.

It is the idea that there are
tendencies in nature which prevent
any species from either becoming
too abundant or going extinct [1]

1 Introduction

The quote above describes one of the main sub-
jects of this paper, that is, how do we protect
individuals who might have attributes worth
saving, but not are sufficiently awarded by the
fitness function, and how do we keep the di-
versity in the gene pool?

We have tried a simple but jet quite effec-
tive procedure, to present the system with a
greater diversity in the gene pool, by protect-
ing weaker individuals from extinction. This
method doesn’t replace current ways of evolv-
ing individuals in an EA, but should rather
be considered as an extension to the standard
methods. The procedure is inspired by biol-
ogy’s concept of symbiosis. We have chosen
symbiosis because it is a powerful construct,
which in nature makes collaboration and in-
teraction between two distinct species possible.
On one side this introduces better individuals
into the ecosystem, but also makes life possi-
ble for organisms, which might not had sur-
vived if it wasn’t for a symbiotic relationship.
We will in this paper argue, that the way we
model symbiosis into the system, introduces
greater diversity and protects part of the gene
pool, which might be worth saving. We will
test this symbiotic procedure on the problem
domain, which is evolution of controllers for a
simple stacking problem.

2 Symbiosis

In the following sections we will give a general
introduction to how symbiosis works in nature,
and aspects of symbiosis we have chosen to im-
plement in our EA.

2.1 Nature
Introduction to symbiosis

Symbiosis is an essential construct in nature,
it is a way for organisms to work together and
compete. Symbiosis is a close ecological re-
lationship between the individuals of two or
more different species. In nature these sym-
biotic relationships happen every day - every-
where - and the examples are as numerous as
there are distinct.

o
ST

Figure 1: An example of symbiosis

Microorganisms live in the skin of many ani-
mals. These organisms live on e.g. dead skin
cells supplied by the host, they further more
get shelter from the environment. From this
relationship the host also gets protection from
harmful bacteria which could cause infections
or skin diseases, since it is harder for the harm-
ful bacteria to colonise the skin when other
microorganisms live there. This relationship
gives explicit advantages for the microorgan-
isms, where the advantages for the host are
somewhat more implicit. An example where
both host and microorganisms get explicit ben-
efit are galls, which are often seen as deformi-
ties on leafs, see figure 1. Plant galls are ”ab-
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normal” structures that develop in the cells,

tissues, or organs of a plant only when it is

colonised by certain organisms such as bacte-

ria, fungi, nematodes, mites or insects. These

organisms secrete enzymes, which simulates hy-
pertophy (overgrowth) in the host plant. For

the microorganisms the advantages are the same
as the previous example: Protection and food

(nitrate).

Not all relationships between different organ-

isms are mutually beneficial. The leech for ex-

ample lives on the host’s blood, and can carry

different kinds of diseases and blood infections.

This relationship is only beneficial for the leech

and might indeed be harmful to the host. In

figure 2 the different concepts of symbiosis can

solution of some partial problem. It is here
that symbiosis comes in. By joining two in-
dividuals, we try to see if the combined effort
the two individuals evaluates better than the
two individuals appart. The new combined in-
dividual holds the entire gene mass of the two
individuals, which joined in symbiosis. By do-
ing this we investigate how different individ-
uals might solve problems together, and as a
side effect the weaker individuals has a bet-
ter chance of surviving. This new relationship
might either be based on Mutualism, Com-
mensalism etc.

be found.! (F1 < Fnew) and (FNew < F2) —  Parasitism
F1 = Fnew = F2 —  Neutralism
(F1 < Fnew) and (F2 < Fnew) —  Mutualism
(Fnew < F1) and (Fnew < F2) —  Competition
= +|| Parasiiem | [Commensalisml | Mineakism (F1 < Fnew) and (F2 = Fnew) —  Commensalism
= 7
b . . . .
=4 | Competition | | | | Poaras o | Figure 3: Relationship between model and na-
SC ture.
- 0 +
species B The relationship of cause depends on the fit-

Mutualism — both species benefit
Commensalism — one species benefits, the other is unaffected
Parasitism — one species benefits, the other is harmed

Competition — neither species benefits

Neutralism — both species are unaffected

Figure 2: The concepts of symbiosis

Why use symbiosis in an EA?

The main problem in many evolutionary algo-
rithms is to keep a certain amount of diversity
in the system. The diversity of cause prevents
the system from stagnating too soon. A spe-
cific problem in developing controllers is that
good partial solutions to a problem may not be
awarded in the fitness evaluation, which might
cause the good partial solutions to disappear
along with its gene mass from the system. The
keywords here is keeping diversity, and saving
weaker individuals, which might have a good

'A ordinary way of dividing symbiosis. Se de-
scription in Boucher [2] or http://www.cals.ncsu.edu/
course/ent591k /symbiosis.html

ness evaluation after the symbiosis. If Individ-
ual 1 has the fitness F1 and Individual 2 has
the fitness F2 and the joined individual Inew,
which consist of a symbiosis between 11 and
12, has the fitness FNew then the symbiotic
relationship between I1 and 12 would be as in
figure 3.

All these relationships, except competition, tries
to

e Protect parts of the gene mass from ex-
tinction, if the two individuals performs
beneficially with one other individual (if
they don’t compete or if there are no
severely parasitic draining).

e Find new solutions by combining the in-
dividuals, which might bring greater di-
versity into the system.

The model we present in the following section
is not based on any definition of species. All
the individuals can join together in symbiosis,
even two with the exact same genes. The idea
of defining rules for which symbiosis should be
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possible seems reasonable, but is not included
in the following model.

2.2 Model

As described in the previous section, symbiosis
is a complex mechanism. We wanted to take
this mechanism and make it part of our model.
We defined symbiosis in our model to be some-
what different than that in nature. When two
individuals join together in symbiosis, they be-
come part-individuals of a new third individ-
ual, which has the ability to use the two parts
as functions, see Figure 4. In order to maintain

a fixed population size, the part-individual with

the highest fitness is copied and lives on in the
population.
Only two individuals can join at a time, this

(9
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Figure 4: Two individuals enter symbiosis.

could look like a limitation in contrast to the
endless posibilities in nature. However the in-
dividual created by symbiosis enjoy equal op-
portunity as other individuals in the symbio-
sis selection process. This makes it possible to
join multiple individuals.

3 Experiments

3.1 The Block Stacking Problem

This problem, described in detail by Koza 1992
[3], was used to test the difference between GP
with and without symbiosis. The goal is to find
programs that can take any starting configu-
ration of the blocks, and arrange them in the
correct order. In Mitchell 1996 [4] and in our
experiment, the correct order of the blocks was
the word "universal”.

A starting configuration is simply a descrip-
tion of the content of the stack and the table.
Problems of this kind have been used exten-
sively to develop and test planning methods in

artificial intelligence.

The building blocks available to make the pro-
grams were a set of terminals and nontermi-
nals. Nilsson [5] defined this set of building
blocks in 1989. The terminals are called sen-
sors, and the nonterminals are divided into two
categories, control structures and actions.
Each sensor returns some information that can
then be used by nonterminals to either change
the starting configuration, or as expressions in
the control structures.

The building blocks are:

e Sensors

— CS - returns the value of the top
block on the stack, if the stack is
empty, NIL is returned.

— TB - returns the value of the top-
most block such that all blocks be-
low it is positioned correct on the
stack. If this block doesn’t exist
(which means the stack doesn’t con-
tain any correctly placed blocks),
NIL is returned.

— NN - returns the value of the block
that is needed on top of the topmost
correct block. If the goal has been
reached, NIL is returned.

e Actions

— MS (x) - move x to the stack if x is
on the table and return x.

— MT (x) - move x to the table if x
is the top block on the stack and
return x.

e Control Structures

— DU (el, €2) - means do el until e2
is true (all values except NIL is con-
sidered true)

— NOT (el) - if el is NIL return true,
if el is the value of a block return
NIL.

— EQ (el, €2) - returns true if the
value of el equals the value of e2.

In order to use symbiosis we added a category

e Symbiosis
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— CALL - if in symbiosis, call a indi-
vidual as a function and return the
value.

From these simple building blocks a random
population was created, the fitness of an indi-
vidual was the number of starting configura-
tions the individual could solve.

3.2 Results

In our experiment we used 1-point crossover of
the syntax trees, and the following mutations

e mutateCollapse, finds a random non-
terminal and collapses it to a termnial

e mutateNewNonTerminal, finds a random
nonterminal and replaces it with a new
nonterminal and subtree.

e mutateExpand, finds a random terminal
and expands it to a nonterminal with a
subtree.

e mutateNewTerminal, finds a random ter-
minal and replaces it with another termi-
nal

The population size was 100, and we had 14
starting configurations.

This was then run for 100 generations, both
with and without symbiosis.

As can be seen on page 6 in Figure 6 the av-
erage fitness raised with more than 100%, and
the same for the best fitness, see figure 5 on
page 5.

4 Conclusions

The concept of symbiosis, taken from biology,
showed quite effectfull in our problem domain.
Compared to the standard implementation it
performed quite well, it found the optimal so-
lution of the stacking problem after about 100
generations, while the standard EA used an
average of 220 generations. This can be ex-
plained by the symbiotic algorithms ability to
avoiding stagnation. These tests must be seen
in the light that the symbiosis algorithm isn’t
very performance expensive.

There are some problems worth mentioning.

The size of the programs generated grows very
fast; as a consequence of this problem we have
limited the number of commands of a single
program to 200. Programs exceeding this limit
are penalized by the fitness function. Another
subject of concern is of course the search for a
solution to the problem that is not just correct
but also efficient, this hasn’t been our main
subject of concern in this paper.

By using a kind multiobjective optimization
this problem could properly have been included
in the algorithm.

In this paper we focused on a simpel prob-
lem domain to test the symbiotic algorithm
approach. There is still work to be done in
expanding and testing other more complex do-
mains.
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Figure 5: Comparison between the best fitness with and without symbiosis.
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Feature extraction in chess

Henning Korsholm Rohde and Wouter Boomsma

Abstract— This paper describes an evo-
lutionary approach to the discovery of chess

features, which in essence constitute the know-

ledge base of a chess engine. As features set
a bound on the reachable level of play, our
approach is in sharp contrast to the usual
fixed hand-crafted features. Numerous prob-
lems arise and are addressed - most promi-
nent being slow convergence and evaluation
uncertainties. Although initially equipped
with the material advantage feature, no use-
ful features have yet emerged.

1 Introduction

The game of chess has traditionally been re-
garded as a purely intellectual discipline re-
quiring a considerable amount of intuition to
master. This was generally undisputed until
the human world champion, Garry Kasparov,
was defeated by IBM’s Deep Blue in may 1997.
In a large extent Deep Blue’s strength relied
on pure computational power, but more im-
portantly quite significant effort had gone into
hand-tuning the machine’s positional under-
standing prior to the match. This proved to
be the difference between success and failure.

Although in the strict game-theoretical sense
any legal position is either won, lost or drawn,
practical play does not benefit from that fact.
In evaluating a chess position both man and
machine typically extract certain abstract fea-
tures, such as material advantage, mobility,
king safety etc, and weigh them up against
each other. These weighted features do not fol-
low from the rules of the game, but are rules
of thumb emerged from experience or supplied
by an external (human) expert. Humans in a
large extent extract features by pattern match-
ing to recognise chunks indicating, say, good
pawn structures, whereas machines more of-
ten rely on measurable tactical and material
features - thereby lacking the long-term posi-
tional perspective.

As these building blocks bound the level of
play - in both directions, e.g. a pure mate-
rial advantage evaluator will always accept a
sacrifice and will never set a piece en prise -
finding the right set of features is in essence
the key to success. The caveat is that as chess
is a subtle game, high-level play is expected to
require a considerable number of features and
finding these and the corresponding weights is
still somewhat of a dark art. The traditional
approach is to use domain knowledge for the
feature selection and to find reasonable weights
by training using a local search scheme (e.g.
gradient descent).

We propose an unbounded approach in which
features are represented in full generality and
subject to an evolutionary process, thereby in
principle allowing novel features to emerge.
The main problem is that - although possi-
ble - they are highly unlikely to emerge from
scratch within reasonable time limits. To avoid
essentially random play, the notion of the rela-
tive values of the different pieces - the so-called
material advantage feature - is included in the
initial population. The goal of the project is,
given this minimum of domain knowledge, to
extract useful features, rather than to evolve a
good chess player.
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2 Evolutionary approach

An important aspect of the project is to try to
substantiate the feasibility of automatic fea-
ture extraction in chess. With this in mind,
the implementation in constructed around a
simple evolutionary algorithm.

2.1 Overview

Each individual in the population® contains
an evaluation functions for board positions in
chess. These evaluation functions consist of
two abstraction levels: subfeatures are intended
to capture geometric attributes of the board,
whereas features combine subfeatures nonlin-
early to express complex properties. The fea-
ture extraction process is enhanced with the
TDLeaf(\) learning algorithm [1], which read-
justs the weighted features after each game.

Initialization: Initially, a small percentage
of the population is equipped with a material
advantage feature. Since genomes with this
feature are expected to do extremely well com-
pared with the random initialized genomes, the
material advantage awareness was expected to
rapidly spread throughout the whole popula-
tion. To trace the influence of different fea-
tures we attached colors to subfeatures in the
following manner:

red Stand-alone material advantage
yellow Material advantage
green Random initialization

black Contribution from geometric mutation

Each genome thus has a list of colors spec-
ifying the origin of its different subfeatures.
Throughout the genetic process, these colors
will undergo changes according to the muta-
tions effecting the subfeature they denote.

Selection: Selecting the individuals for suc-
ceeding populations is most naturally done by

2The experiment was conducted with a population
size of 100. A distributed algorithm using 25 800MHz
PIII-PCs completes a generation within 30 to 60 min-
utes.

tournament selection. This allows the qualities
of an evaluation function to be determined by
letting our underlying chess computer use it
in play. This strategy naturally only gives a
crude approximation of the best individuals in
the population. Completing a full size tour-
nament in every generation would solve this
problem, but it is in practice infeasible.

Alternatives to the tournament selection ap-
proach would involve a definition of fitness for
each evaluation function, which in turn would
require some sort of fitness function on the
evolved engines. However, such a function would
encapsulate a great deal of chess knowledge,
and thereby violate one of the principle ideas
behind the project.

2.2 Feature representation

The features and the subfeatures are jointly
represented in a 2-hidden-layer neural network
(Figure 1), where the number of subfeatures
and features corresponding to nodes in the hid-
den layers can be increased and decreased by
the genetic operations. This representation is
in theory capable of expressing any bounded
continuous function [3], which is more than
sufficient in the discrete game of chess.

Bitboard input
A subfeatures
g O
/ , O features
§ / O O
: o o O
- o :
o O .
N g

Figure 1: The evaluator

For compatability with the neural net the
board must be flattened to a vector. We ex-
pand the board into a separate bitvector for
every piece and color as most features in chess
are concerned with specified pieces in certain
situations. This allows human initialization
of meaningful features. Furthermore, the dis-
crete nature of the representation also makes it
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possible to reuse large amounts of calculations
during successive evaluations, making the per-
formance in play unaffected by the large input
size.

A more compact alternative of input represen-
tation uses one entry for each piece position,
and the pieces are assigned values according
to type and color. This has the problem that
mutation and crossover operations are not nec-
essarily stable with respect to the pieces their
subfeatures target: even small mutations in
the weights of the neural net may shift focus
from one piece to another. This is similar to
the hamming cliff problem with the standard
binary representation.

In the feature level a differentiable nonlinear
function, the sigmoid, is employed to accom-
modate the gradient descent based learning
scheme. In the subfeature level it is not sensi-
ble to use learning due to the extensive amount
of zeros in the input. This allows for the use of
non-differentiable functions to further simplify
hand-coded subfeature expressions.

2.3 Genetic operators

The crossover operator selects features from
two genomes and combines them to form a
child. Since the subfeature layers of the two
selected genomes are generally not equal this
often results in the copying of nearly all sub-
features nodes, thereby doubling the size of
the subfeature layer. To avoid an exponen-
tial blowup in the size of genes several pruning
strategies were implemented to remove nodes
solely connected to the network with particu-
larly small weights.

Due to the complex nature of the genome rep-
resentation we designed mutation operations
that operate on several levels of the genome,
where they each have a specific goal. One is
designed to decrease the size of the subfea-
ture level and to allow the spreading of fea-
ture information throughout a single genome:
it simply merges two subfeature nodes arith-
metically.

Another operation is designed to try to over-

come one of our greatest concerns: besides its
vast size, we have little insight in the topo-
logical properties of our search space, and it
may easily prove to be so sparsely populated
by good solutions that the algorithm has prob-
lems finding even a small amount of them.
This problem is additionally complicated by
the fact that geometric properties of the board
are not apparent to the evaluation function
due to the flat representation of the board. We
try to solve this problem by introducing muta-
tions based on geometric patterns induced by
the movement rules.

3 Results

The presented results are rather inconclusive,
as we unfortunately were forced to stop the run
after only 41 generations due to disk space ex-
haustion. Nevertheless, to evaluate the strength
of the population each member battled against
the initial red material advantage player - and
it was not a pretty sight: 73 defeats, 25 draws
and two victories; this was certainly not what
was hoped for.

Upon examination the prospects that were able
to draw, exhibited extremely disappointing be-
haviour. Many of them achieved a draw by
extraordinary passive play - thereby creating
a position without any nearby capture and ex-
ploiting the lucky fact that the red player con-
sidered a draw better than a quiet equal posi-
tion. Absurdly, both players thus apparently
cooperated towards ending the game by a three
times repetition of a position.

The two winners naturally seemed the most
promising and play similarly to the material
advantage most of the time. Regretfully, the
rest of the time they typically play miserably.
After closer scrutiny they appear like slightly
noisy material advantage players and no novel
useful features seem to have appeared. It is of
course possible that some of the losing genomes
play similarly, but it is still seems unlikely that
they should contain truly new features.
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3.1 Origins of genes

As the total number of subfeatures in the pop-
ulation change dramatically during the course
of evolution, a baseline - a run with random
selection - was calculated allowing us to more
directly observe the contribution of the tourna-
ment selection pressure to the gene flow. Thus,
in effect coarsely measuring the usefulness of
the colors - especially detecting whether novel
genes (green/black) are spreading throughout
the population.

Figure 2: Color distribution - Green

ta

— experiment dat
baseline data

Figure 3: Color distribution - Red

The stability of the baseline distribution is re-
markable (Figures 2-5). The mutation and
crossover operations successfully spread gene
properties through the population, but not to
the advantage of any singular color. Only black
has a slight increase due to the new mate-
rial introduced with geometric mutations. Be-
tween each generation all individuals are trained
and one may therefore expect a bias towards
material advantage even without selection pres-
sure - simply due to the decrease of weights

0,025

0.015

0.005

Figure 5: Color distribution - Black

on edges connected to useless nodes and the
different pruning operations. The lack of ex-
pression of this effect might indicate that the
training of the neural nets is not sufficient.

It is also interesting to observe the genome
sizes under the reduced selection pressure. The
subfeatures in the genomes literally explode in
numbers - with an unfortunate impact on per-
formance both of the evolutionary algorithm
itself and on the quality of play as well. This
indicates that too many subfeatures of poor
quality manage to survive.

4 Discussion

As the main goal of the project is left unful-
filled, the focus naturally falls on unresolved
issues. First, the sensitive subject of subfea-
ture selection pressure is discussed in light of
the presented results; second, related issues of
more pragmatic nature are discussed.
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4.1 Subfeature selection pressure

In order to evolve useful subfeatures a reason-
able selection pressure on the subfeature level
must be present; several steps were made to
try to ensure this:

Real-time conditions: As the engines bat-
tle under real-time restrictions a too large neu-
ral net is prohibitive for deep search, which in
effect encourages smaller and more compact
engines, due to the fact that - given reason-
able play - a increase in search depth implies a
greatly increased playing strength [2]. This in-
terplay is known as the search-knowledge trade-
off- Due to certain optimizations a quite large
window of genome sizes search to equal depths
making the pressure somewhat coarse-grained;
this is, however, slightly remedied by the shift-
ing battle conditions caused by different work
loads.

Pruning of unused subfeatures: If the out-
put of a subfeature is weighted lower than a
certain threshold (currently 0.001) by all fea-
tures, it is considered to have such a small im-
pact on the end result that it can be removed
without consequences. Note that rarely used
- but highly weighted - subfeatures are unaf-
fected, which is desired since useful (human)
subfeatures often only rarely come into play.

Inclusion of material advantage: The ma-
terial advantage gene is - when taking grow-
ing genomes into consideration - as expected
spreading rapidly (Figure 3), and it was also
the initial hope that it would not only increase
the selection pressure but also set a standard
for the quality of play; as reported this was not
the case.

Apparently, these steps were not enough to
counter the subfeature blowup caused by the
crossover operation. The material advantage
gene thus completely drowned in green noise;
speculatively, the material advantage selection
pressure seems to have completely vanished at
the stagnation after 20 generations (Figure 3).

4.2 Pragmatics

As demonstrated, in any real-world applica-
tion it is the adaption to the domain and the
pragmatics issues that precede results. The
most peculiar, however, is a misprint in the
central learning algorithm [1], which we first
discovered when recalculating the results us-
ing Sutton’s original article on Temporal Dif-
ference Learning [4].

Besides parameter readjustment several issues
presented themselves:

Limited learning: The learning phase takes

place after every game and readjusts the weights
of the upper two layers to maximize the use of

the subfeatures; but this does not seem good

enough to even coarsely evaluate the subfea-

tures - thereby adding unwanted noise to the

evaluation process. Unfortunately, it is expen-

sive to, say, let engines battle more than once,

but otherwise we risk relying on semi-random

subfeature evolution.

Training: Closely tied with the learning is-
sue above is the problem of newly modified
genomes in which the misadjusted weight prob-
lem is even more outspoken. Due to reluctance
to introduce well-selected training games, an
alternative could be to use a fixed material ad-
vantage player as a sparring partner for weight
adjustments. Again, this is expensive. Lastly,
to train using the games played in the selec-
tion process could prove a useful compromise,
which is relatively cheap, but we then run the
risk of using literally obscure games.

Algorithmic modifications: To further
advance the pressure from the material advan-
tage gene - and since premature convergence
is not really an issue yet - it could also prove
useful to let children battle against the par-
ents they replace. This would reject incompe-
tents at the cost of exploration, and hopefully
a stronger population would emerge.

Clearly, the greatest obstacle is limited time;
this does not come as a surprise, and the diffi-
culties consists of choosing where to allow slack
and where to accept longer running times. On
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that account, removing the real-time factor us-
ing (shallow) fixed depth search is not deemed
good enough. Using a more sophisticated method
of evolutionary computation, say spatial mod-
els, is also an option and will be considered
after more experiments.

5 Conclusions

The difficult task of extracting features from
the complex game of chess can not be expected
to be solved after a few generations; therefore -
with some modifications - we still believe in the
feasibility of our initial approach. Regretfully,
as always with non-vanilla applications we en-
countered heaps of problems of more practi-
cal nature, which invariantly have hindered the
evolutionary process.

As suggested, in future work® the practical
problems naturally need to be resolved, and
much more aggressive actions to ensure sub-
feature selection pressure must be taken; these
issues are closely tied together and when re-
solved should make very long evolutionary runs
feasible. This is a prerequisite for useful re-
sults.
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Applying EAs to Shape fitting

Jacob Mortensen and René Manggaard

Abstract— Moving from visualising dis-
crete line segments and instead visualise para-
metric curves in a medical application, that
are close to the original line segments, have
different implications.

The result output from the implementation
must be sufficiently close to the discrete line

segments and at the same time provide smooth-

ness. Furthermore, can some of the original
vertices from the line segment be deleted,
with only a small impact on the area de-
viance, this is a great advantage; the new
solution with the parametric curves will be
smaller. Specifically for this project, the hu-
man operator that validates the points for
deviances from the raw MR pictures after
the algorithm, will have to move fewer points
with a parametric curve implementation, if
some of them are bad placed. The result
should still keep the close resemblance with
the raw data.

In this paper we describe our implementa-
tion of an EA with the task to smoothen
line segments and at the same time reduc-
ing the number of points in the new solution.
The task is in cooperation with a ongoing re-
search project dealing with visualising mod-
els of patients hearts.

1 Introduction

Our project is a small part of a ongoing re-
search project, The Cardiac project, at CAVI,
which is a cooperation between Aarhus Uni-
versity and Systematic Software Engineering.
Our goal has been to investigate and develop
a method to shape figures resembling figures
constructed from MR scannings using evolu-
tionary computation. The goal from the re-
search projects point of view is to reduce the
dataset while smoothing and maintaining the
shape of the scanned body part.

Humans beings with heart problems of vari-
ous kinds, are at the current time scanned in
a scanner type called MR scanner. The prod-
uct of the scanning is around 50 pictures, that
looks very similar to ordinary x-ray pictures.
At the current time, this is what the surgeons

use for diagnostics and planning of the opera-
tion. Needless to say, it can be very difficult
to visualise a volumetric heart out of these raw
MR pictures, and unfortunately, sometimes di-
agnoses proves to be wrong. This can be very
dangerous if the error is first discovered under
the operation.

The cardiac project provides the surgeons with
a application, that runs on a standard pc, and
can visualise a 3d model, constructed from the
original raw data, obtained from the MR scan-
nings. Pictures from a MR scanning of a heart
can be seen in the appendixes.

There are many inherent problems with the
raw data from the original MR pictures. The
primary is the technical, since it is not possi-
ble to synchronise the pictures with the heart’s
subtraction phases. This means that the orig-
inal data from the MR scanner is very noisy.
Furthermore, finding the border between the
blood and the tissue is very difficult, and calls
for advanced algorithms.

The current algorithm used for finding the bor-
der produces a large set of points that lie on
the border, as shown in the appendix. These
points are connected with line segments to form
the line segment border between the blood and
the tissue.

At the current stage of the application, a hu-
man operator checks the line segments, to ver-
ify that they conform with the underlying raw
MR picture. Since the set is quite large, this is
a tedious job, should some of the points prove
to be ill placed. For these ill placed points, the
human operator usually has to move a some-
what large set of points, to make the line seg-
ments conform with the raw MR picture.

The cardiac team would like to make this eas-
ier, by displaying fewer points, that still are
sufficiently close to the line segments. Suffi-
cient here is somewhat waving since the raw
data already are noisy. Furthermore, the car-
diac team wished to smoothen the data, as
this is closer to the original human tissue, and
parametric curves have nice attributes besides
the smoothness: they can be provided at any
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detail level, it is only at matter of setting the
granularity of the individual evaluation of a
line segment.

We will in this paper describe our implemen-
tation of an Evolutionary Algorithm, which is
used to provide a solution to this problem.
The next section gives a formal definition of
our task, followed by a section on parametric
curves. After that, follows a section on Bezier
splines, the type of curves we chose to use in
our current implementation.

The next sections are more directly connected
to Evolutionary Algorithms. Section 5 will
give a overview of the different EA mechanisms
we chose for our implementation. Section 6
concerns improvements that we suggest, for
getting better solutions, by improving differ-
ent mechanisms in our implementation.
Finally, we have section 7 and 8 about our ex-
periences and the conclusion on the implemen-
tation.

2 The Task

Our task is

e Given a set of ordered vertices represent-
ing the figure, find a smooth approxima-
tion, which resembles the same figure

e Reduce the number of vertices used by

the parametric curves to a minimum, while

keeping the above in mind.

It should be taken into consideration that the
raw data is noisy, and therefore removal of
points is more important than close fit to the
curve.

The final decision on parameter tweaking de-
pends on the Cardiac team, and should be
done in cooperation with these. This is the
human factor aspect of the task.

3 Parametric Curves

There are many different classes of curves, each
with their specific characteristics. One of the
main attributes of curves is the scalability in
resolution; it is possible to evaluate the curve
segment with higher granularity, and as such
it is possible to easily implement zooming ar-
bitrarily close to a curve, without it getting

“jagged”.

Another characteristic is that a parametric curve
is a more compact and manipulable represen-
tation than the line segment representation.
We chose the cubic Bezier splines as a start-
ing point, as it was easy to find material about
them, and they are quite easy to understand
and implement. Cubic parametric curves are
more flexible and allows greater control, than
do linear and quadratic curves, and that with-
out the higher degrees unwanted wiggles and
computational costly evaluation. A remark
here is that our implementation of Bezier splines
isn’t Gg, but that it is possible to get C; in
more restrictive cases. See [1] for a more thor-
oughly introduction.

Below is a short introduction to Bezier splines,
that should be sufficient to read and under-
stand the way we use parametric curves in this
report.

4 B-Splines

Bezier splines (B-Splines) is specified by a num-
ber of control points, depending on the order
of your spline. We will introduce the linear,
quadratic and cubic B-splines which have 2, 3
and 4 control points respectively.

4.1 Linear B-Splines

This is the simplest form of B-splines, and is
just a linear interpolation between the two con-
trol points.
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Pit)y=(1—-t)Ph+tP, 0<t<1

This is the current stage of the cardiac teams
own implementation, i.e. the line segments
between the vertices on the border separating
blood and tissue.

4.2 Quadratic B-Splines

We interpolate between Py and P, and get POI,
and then interpolate between P; and P, and
get Pl. Finally, we interpolate from P} to P}
and get P(t), the point on the curve.

P(t)=(1—1)2Py+2t(1 —t)P, + 2P,
0<t<1

4.3 Cubic B-Splines

Again interpolation. We start by interpolating
on the three line segments given by Py, P1, P»
and Pj, this gives us Pi(t), PL(t) and Pj(t).
This gives us the basics for P3(t) and P?(t),
which is constructed by interpolation between
the three points Py (t), Pl(t) and Pj(t). Fi-
nally our curve is given by interpolation be-
tween PZ(t) and PZ(t).

PD Fig.3 P3

P(t)=(1—1)3Py + 3t(1 — t)2P +
3t2<1 - t)PQ + t3P37
0<t<1

5 Applying EAs to the task

The above mentioned sections gives us some
tools to shaping the figure, but how do we
achieve our goal, reduction of the size of the
dataset and smoothing of figure, by using an
EA? We have to come up with the basics of
the EA constructions; genome layout, fitness
function, selection, mating and mutation. Our
considerations about these topics are outlined
in the following subsections.

5.1 Genome Layout

From the start it was obvious, that the genome
should at least have some relation to the raw
list of vertices, i.e. the line segment data.
Apart from that, we had some considerations
about bringing other things into the genome,
one thing could be the order of the splines.
After reading material about splines it was ob-
vious, that this could become rather complex
compared to the expected result, and we de-
cided to focus only on the raw data instead.

Another consideration, which was conceived
later as our knowledge about parametric curves
became better, was to bring weights into the
genome, so that individual control points could
influence the path of the curve. This would
allow a tighter fit of the curve to the line seg-
ments - another solution to allow the curves
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to obtain a better fit, was to let the individu-
als keep their own copies of the line segments,
allowing the individuals to move the vertices,
and in that way try to evolve a tighter fit.
This is important with our current implemen-
tation, as the Bezier splines usually don’t pass
through the control points. Even with a curve
type that passes through the control points
this mechanism could be good, since it allows
greater freedom for the individuals, in the evo-
lution race to achieve the highest fitness.

We have chosen a rather simple genome
layout, since the bit-vector seems like a good
solution in this case. It is then possible to ex-
pand with the weighting/copy of the control
points in a later stage, so this is not a part of
our genome at the current stage of the imple-
mentation. Before this comes into considera-
tion, we might try to implement another curve
type into our EA, a type that goes through the
control points, as this is a rather simple step.
We used a bit-vector of length equal to the
number of vertices from the raw data. Our in-
terpretation of the bit-vector is as follows: If
bit i is TRUFE then we use the data point at
that index in the raw data array in this in-
dividual (solution), otherwise the point isn’t
used. So the bit-vector is a pointer into which
points in the raw data, this individual uses to
achieve a set of curves, that fits the line seg-
ments.

From the bit-vector (and thereby the data points),

we construct a number of splines given the
above interpretation of the bit-vector.

Lo 1] o] o] 1 2 afo| 1] 1] o] 1| [o]

5.2 Fitness Function

The purpose of the fitness function is to lead
the solution set to the optimum, which in our
case translates to:

e Maintaining the original shape of the fig-
ure

e Reducing the dataset

This is rather difficult, since the raw data is
rather noisy and different raw data sets don’t
exhibit the same properties; some parts of the
raw data is very smooth, and have a tendency
to show “stair case behaviour”, see the figure
below.

The optimal solution here should be a curve
that takes the “middle-way” and doesn’t try
to interpolate between the data points, as this
will give a undesired "wave” effect, see draw-
ing below.

If these stairway cases becomes just a bit
larger, this could be some property of the un-
derlying tissue, so here we would actually like
to have the EA emerge with a wave like solu-
tion. Is is important to find useful weights of
the fitness function, that takes this into con-
sideration - our human intuition is hard to pro-
gram into the evaluation.

Furthermore, we here have two different goals:
maintaining the original shape of the curve has
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a tendency to call for use of more points. Ac-
tually, as we have defined our fitness function,
the best fitness would be linear interpolation
between the raw data points, as the area de-
viance is calculated at the difference between
the curve segment and the data line segment.
So we have to force the EA to use at least one
curve in the solution. But generally, the im-
plementation has a better chance of getting a
small area deviance, when it uses more points.
Against this is the goal of reducing the number
of control points, which has a tendency to give
higher deviances in area. As stated before, this
is an important goal of two reasons:

e The data is very noisy, so the original line
segments probably isn’t the best solution
at all

e Fewer points makes the validation of the
raw data easier, as moving a control point
at a curve segment is equivalent to mov-
ing at large set of points in the equivalent
part of the line segment edition.

Finding the correct weighting between this two
opposing goal takes some tweaking, to get a
curve solution that is sufficiently satisfiable.

Therefore our solution is to:

e Punish area deviance
e Reward solutions using fewer points

e Last but not least: A fair weight between
the above

Our current implementation of the EA there-
fore uses the fitness function:

_ PointsInSolution
f<t) - fCLCtOT’ ReferencePoints +

AreaDeviance

5.3 Evolution Mechanisms

In this investigation we have used rather sim-
ple evolution mechanisms. The mechanisms
are some of the ordinary when using bit-vectors
as genomes. Short descriptions are listed be-
low.

Selection

Our selection process are based on tournament
selection as described in [2] and [3].

Two randomly chosen individual compete for
survival. The winner takes the losers place in
the new generation. In each evolution step,
we hold as many tournaments as there are in-
dividuals in the population.

Mating

Mating in our EA is done by 1-point cross-over
as described in [2] and [3].

Two randomly chosen individuals produce an
offspring with a random cut-point. The off-
spring is then inserted randomly into the next
generation, thereby discarding the previous con
tent /individual of the slot.

Mutation

Genetic mutation is done by simple bit-flipping
at a random point in the bit-vector.

6 Improving the EA

In the development of the current implementa-
tion we have come up with some improvements
in search for better solutions.

6.1 Evolution Mechanisms

Our current implementation is rather simple,
and not guiding the solutions in any special di-
rections. We haven’t used any special knowl-
edge about the problem area, and therefore it
should be possible to invent some better tech-
niques.

Mating

We have thought about implementing n-point
cross-over, combining genetic material from dif-
ferent parts of the parents. We are currently
not sure that this will have a large impact,
compared to 1 point-cross over, which seems
to function very satisfiable.

Instead we have thought of some different mat-
ing mechanisms:
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e Producing better off-spring by combin-
ing locally good solutions from the par-
ents. To do this, we will have to some-
how introduce fitness of part of individu-
als, perhaps by splitting a single individ-
ual up into multiple individuals, thereby
effectively creating subpopulations, that
could mate with equivalent subpopula-

tions in other individuals, perhaps by some

migration mechanism.

e Poly-parenting, by letting it be possible
for more than two parents to supply ge-
netic material to the new individual. We
imagine this could be done by letting lo-
cal fitness play a part (as above), by eval-
uating and combining the best local fit-
ness’ of the parents into the new child
- this could also be done with the nor-
mal two parenting process, be evaluating
the local areas of the parents, and then
by some probability let the fittest par-
ent win by copying its genetic material
into the new child. A kind of tourna-
ment selection mechanism will then be
introduced into the mating process.

Mutation

We have some different ideas that might make
mutation behave better than the current im-
plementation.

e Instead of making bit-flip randomly, we
can move existing true bits in the bit-
vector to the left or right of their current
position, thereby exploring solutions sit-
uated in the local vicinity. We have high
expectations of this, since the impres-
sions we get from our visual feedback,
lead us to believe that this will make the
algorithm converge faster without loos-
ing too much diversity. The argument
here would be, that we only move about
in the local area, and as such explore i
this way. If we to this behaviour add the
usual mutation mechanism, we still have
a good chance of keeping the diversity in
the population.

e Furthermore we have thought about let-
ting local area differences influence the
mutation rate in the neighbourhood. This

way, in areas where there are large area

deviances, we will search more thoroughly,
and perhaps add points to make the de-

viance go down (ie in areas with large

area difference from the raw data). On

the other hand, if we have areas where

the is a low deviance, we can try a so-

lution without some of the points, again

improving the fitness of the individual.

7 Experiences

From the project we have had different expe-
riences, more or less frustrating.

On the positive side, our graphical feedback of
how the population slowly converged towards
the reference graph, was an enormous help. It
made the behaviour of the population more
easy to understand, than it would be just look-
ing at raw data. Furthermore the goal of the
project was oriented at giving the human op-
erator a visual feedback of the curves fitting
the reference line segments.

On the other side, working with EA’s can be
very frustrating, since the control is placed un-
der the evolution mechanism, and it can be
very difficult to understand why a certain be-
haviour emerge. When we introduced another
idea, the algorithm usually came up with an-
other behaviour, that proved to have unin-
tended side effects. So the adapting ability,
which definitely usually is the nice thing about
this technique, can sometimes be rather annoy-
ing. It definitely makes problem solution a lot
harder, because the program is harder to rea-
son about, than ordinary programs. Or is it
just because we are used to normal algorith-
mic solutions?

We have had some problems getting the algo-
rithm to work for different reference models,
i.e. different geometric forms in the raw data
calls for different optimisations for the specific
problem instance. The problem is fitting the
algorithm to all problems. We have already
described the related problems in section 5.2,
about finding a satisfiable fitness function.
Also, it can be rather difficult to reason about
new idea’s impact. Will Poly-parenting for
example be worth trying? How will it affect
convergence? What about the diversity in the
population? Will subpopulation in the indi-
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viduals have any effect? and so on. This takes
more experience than we have at the current
time - we have had a lot of "huh!” experi-
ences during the implementation process, most
of them luckily good natured. We were rather
surprised of the robustness of just the very sim-
ple implementation of an EA.

8 Future work

8.1 Weights or moving control points

The next implementation area, that we think
would yield a far better result, is very probably
the idea of moving the points/weight the con-
trol points, to make the individuals capable of
fitting the reference line segment curve tighter.

8.2 Proposed improvements

Some of the ideas that we have presented in
section 6, improving the EA, could be the focus
of implementation into the program. There
certainly should be work enough for some time.
A aspect of this is developing a better design,
that allows fitting new improvements quickly
into the implementation. This would allow
more experimentation, which is necessary, be-
cause it is difficult to foresee all pros and cons
in advance of implementation of new methods.

8.3 Using other curve types

The implementation of the current curve type
is not C9, and the curves are very jagged in
the points where they end and begin. Some
of the other types of curves are Cy, and will
of course fit better to the smooth surface a
heart has. This is only a minor change in our
implementation, after a bit of redesign. The
reason why we didn’t start out with a Cy curve
was, besides the already stated reasons, that
we wanted to focus on the framework of the
EA, and get it up and running before working
more with splines, as this is the focus of the
course.

8.4 Using another technique

It could be very interesting to implement an-
other technique, for example Hill Climbing, to
see how this would solve the problem, com-
pared to the EA. This could also give insight,
which could be used to improve the EA.

8.5 Design of good reference models

When designing the EA it was hard to direct it
to good behaviour, because good behaviour is
a fuzzy term. The solutions to this could be to
develop some reference models, where we have
some kind of intuition about the wanted be-
haviour. As reference model the clearest exam-
ple coming to our mind is the stair case model,
where our immediate feed-back could give us
good tools in the tweaking of the parameters
for the EA. The results could also give good
input and feed-back from The Cardiac Team
members in some kind of show case, since they
are the final judge on the project result.

9 Conclusion

We quite pleased with the emergent behaviour
of our simple implementation. The algorithm
is actually capable of finding decent solutions,
even though we have just used some of the
most simple and fundamental techniques from
EAs. The question is if it is possible to im-
prove the solution under the current frame-
work, without implementing some of the mech-
anisms we have talked about in the above, or
if that would just introduce other more ob-
scure problems. We think that one of the ma-
jor strengths of EA is the simpleness of the
algorithm compared to the solution capabili-
ties they have.

As stated above, we have some problems deal-
ing with different graph types, display differ-
ent attributes from the problem domain, where
some parts of the heart is smooth, and other
parts are more curly. The big problem here
is to find a sufficient good fitness function,
that takes these different inherent problems
into consideration. It is more difficult to rea-
son about the suggested improvements will give
better solutions to this problem.

We are not quite sure that EA’s are a good
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solution to precisely this problem, but so far
it gives a sufficient good solution, that gives
us confidence in a sufficiently good solution to
the task, but this will take a more work.

We are surprised of the ease and simpleness
of implementing an EA to our given problem.
The toughest task hasn’t been the implemen-
tation, but getting the right ideas; what to
choose for genomes, which parameters that are
important and such. It is our experience that
insight into the problem area is very impor-
tant, as this gives better possibilities for get-
ting the right idea at the right time.
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10 Raw data picture from the MR scanner - 1: Overview

The grey colour is blood, the black is tissue. The dots are the vertices used in the line segment
border.
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11 Raw data picture from the MR scanner - 2: Closeup
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3D model acquisition from 2D images

Rory Andrew Wright Middleton, Jesper Mosegaard, and René Dalsgaard Larsen

Abstract— The utilisation of 3D models,
play an increasingly important role in sci-
ence and mainly in the context of under-
standing and experimenting with real com-
plex objects and structures in a virtual en-
vironment. To do this it is often necessary
first to obtain the 3D model resembling the
actual object from a set of data, in some
cases images of the object in question, and
then construct the 3D model by hand. This
process of hand modelling is often highly
time consuming, and has motivated the idea
of automising this process partly or entirely

using a standard evolutionary algorithm. This

report explains the idea, implementation, and
testing of an EA for obtaining a 3D model,
under a specific rendering, from one or more
2D images depicting a given object.

1 Introduction

Several approaches to the problem of 3D model
acquisition have been explored. Some are lim-
ited by the topology of the objects from which
the 3D model is to be obtained, and others
are problem specific and only work on some
specific type of objects.

One method [1] operates by finding sam-
ple points e.g. corners of a building in a series
of images depicting the same object but from
slightly different angles. Then by matching up
sample points from the different images corre-
sponding to the same region of the object the
actual shape of the object can be calculated, if
camera lense and position is known in advance.
The sample points are obtained by analysing
the color changes in the picture and by ap-
plying heuristics to interpret these changes in
terms of corners.

The results obtained with this method are
good, but as the method is dependent on the
obtained sample points the method does not
work on smooth surfaces such as faces where
color changes are infrequent, and also topo-
logical complex objects might get this method
into trouble.

The method described in [2] is somewhat

more problem specific. The goal of this ap-
proach is to obtain 3D face models by analysing
2 pictures of a human head, one from the front
and one from the side. This method also op-
erates with the notion of sample points, and
these are obtained by analysing the two pic-
tures and by recognizing edges and face fea-
tures such as mouth, eyes nose. Then, by
matching up these points with corresponding
points in a ”"standard” 3D face model, this
standard model can be modified to resemble
the head of person from the pictures.

An other and widely used method regard-
ing acquisition of 3D face models, is the use
of a projected light grid [3]. By projecting a
grid of light onto the given object before mak-
ing the 2D image to analyse, the method can
obtain knowledge about the object shape. By
using the projected grid in the color analysis
of the 2D image it is possible to construct the
corresponding 3D model. The results with this
approach are good, but one disadvantage is
that hardware is needed to project the light
grid.

Our idea is to develop a general method of
3D model acquisition from 2D images, which
will work on a series of images depicturing any
object, and we want to do this without as-
suming anything about object topology, the
camera settings, and without the use of special
hardware. We have chosen to use a standard
EA for the purpose, because we can’t hope for
good results using neither exact methods nor
sample point techniques because of our very
general formulation of the problem. What we
could hope for is that the evolution can come
up with some optimal strategy or near optimal
at least, relating to each problem instance.

We maintain a population of 3D models
each consisting of a number of triangles, and
by evaluating the fitness of each individual we
determine if the individual is good enough to
survive. As we will get into, it is somewhat
hard to define operators such as mutation and
crossover, and the notion of fitness evaluation
is not straightforward either. In the following
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we will describe our considerations regarding
implementation and some inherent difficulties
of the problem. We start by explaining our
implementation and data structures. We will
go on describing two attempts of solving the
problem and the difficulties we experienced re-
garding these approaches. Finally we discuss
what could be done to overcome some of the
difficulties and what could be done to improve
the performance of the EA.

2 EA and chromosome design

Basically a chromosome consists of two lists:
One of points in 3D space and one of trian-
gles. Each triangle has a reference to three
points and to its neighbours. The triangles
are all connected in such a way that they form
a 3D surface. Each triangle also has a anti-
clockwise ordering of its points, which we use
among other things for finding the normal of
the triangle (used for shading).

2.1 Recombination

Recombination deals with how we get from
one generation to the next. Of course, first
we compute the fitness based on the technique
given below. The chromosomes in the next
generation are a combination of the chromo-
somes found using tournament and new chro-
mosomes created by crossover. We have a vari-
able in our program that tells us how many
percent of the next generation we want to be
created by crossover. We find the best indi-
viduals of the old generation by tournaments
with 2 individuals. We also use elitism by
always keeping the best two chromosomes of
the old generation. When we do crossover, we
have a tournament between four individuals
and the best two get to perform a crossover.
When we’ve created the new generation we run
through all of the chromosomes and use the
various mutation operations described below
on the chromosomes.

2.2 Fitness evaluation

In order to evaluate the fitness of a chromo-
some, we render its triangles onto the screen,
and load all of the image data into a buffer.

Now we have an array corresponding to the
original image, and an array corresponding to
the rendered image. We compare these two in
order to get a fitness. Instead of comparing the
images pixel by pixel, we take lots of random
sample points and use these to calculate the
fitness. The fitness evaluation is divided into
two parts, first we look at the whole picture
and see how close the resemblance is, and this
number is normalized to a number between 0
and 50 (50 being good). Then we run through
all of the triangles and see how well they re-
semble the original image. This also gives each
triangle a fitness. We take the average trian-
gle fitness, which is a number between 0 and
50, and add it to the chromosomes overall fit-
ness, giving us a number between 0 and 100,
where 100 means that every sample point has
exactly the same RGB value as the original.
Of course, if we had multiple source images we
could render the chromosome from all the dif-
ferent angles and get a more realistic fitness.
As things are now, a chromosome can easily
get a really high fitness just by being a big gray
blob, and it’s easy to imagine that we can get a
chromosome with fitness 99 which may resem-
ble the given picture from a certain angle, but
that the chromosome has achieved this resem-
blance by doing all sorts of weird tricks thereby
turning itself into a very corrupt 3d-model. Of
course, this would also be an obvious place to
do some sort of multi-objective optimization.
For instance, our objectives are also to create
an object with few polygons, so we could pe-
nalize a chromosome if it consisted of too many
triangles.

2.3 Mutation

We have a variety of mutation functions that
are all applied to triangles. When we mutate
a chromosome, we run through all of the tri-
angles and use these mutation functions with
some given probabilities. These various op-
erations have been chosen in such a manner
that it is possible to create a wide range of 3D-
shapes by applying them. We have functions
for adding and removing triangles, for adding
and removing complexity, and functions for
moving points around.
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Add Triangle

This mutation function can only be applied to
a triangle if one or more of its neighbours are
non-existent, which means that it’s possible to
grow an extra triangle out of one of the trian-
gle’s sides. The new triangle will have exactly
the same shape as the original triangle, since
it will be a mirror image.

Delete Triangle

“delete triangle” can only be applied to a tri-
angle if one or more of its neighbours are non-
existent, otherwise we’ll end up with a shape
with a hole in the middle, which we won’t be
able to fill out again.

Split Half

Figure 1: The split half operation

The “split half” operator basically splits an
edge in half, thereby changing one triangle into
two smaller ones (if the edge is only incident to
one triangle), or two triangles into four smaller
ones.

Contract

Figure 2: The contract function performed on
the grey triangle.

Since “split half” adds complexity, we fig-
ured we’d need one to remove complexity as

well. What contract does to a triangle is elimi-
nate it by pulling all of its three points together
into the center point of the triangle. This op-
eration has a big effect on the surrounding tri-
angles as well, and quite often messes up the
surrounding triangles by causing them to flip
and overlap.

Move Point

This simple mutate operator moves a point a
little bit randomly. We tried to take some pre-
cautions with this operator to make sure that
the created triangles didn’t become too messed
up. First of all, we didn’t want triangles to
become to long and thin, and we didn’t want
triangles to flip either (to “flip” is when point
A in a triangle crosses the line defined by B
and C). This can be prevented by looking at
how far away a point A is from the line defined
by B and C. We don’t want it to be too close,
but we don’t want it to be too far away either.
So if a “move point” operation would result
in an undesirable triangle defined in this way,
we wouldn’t perform this operation. Unfortu-
nately this constraint resulted in some points
that became “locked” meaning that they never
got moved. Another thing we tried to do in
this operation was to see that if a triangle had
any undesirable properties before we moved it,
we tried to move the points in such a way that
the triangle became healthy again. Unfortu-
nately this wasn’t much help either, since when
we tried to “cure” a triangle, we usually ended
up messing up its neighbours.

2.4 Crossover

It is pretty hard to define a crossover function
that does something that makes sense without
ending up with a corrupt chromosome. The
crossover function we’ve come up with works
as follows: It takes two chromosomes ¢; and
co, and starts of by copying chromosome ¢y,
thereby creating c3. Then for each point p; in
chromosome c3 we find the nearest point p; in
co and move p; towards p;. After all of this,
c3 will be the child of ¢; and ¢g. This function
can be modified to take the fitness of triangles
into account. In this variation, we only move
a point if the destination point is fitter.
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2.5 Problems with mutation

Figure 3: Example of “illegal” add triangle op-
eration in the 2D case.

The main problem with these mutation and
crossover is that we have a reasonable idea
about how we want a 3D shape to look like,
but it’s pretty hard to tell the algorithm about

3.2 Problems and their solutions

First of all we do not want to "ruin” individ-
ual with mutation and crossover. By ”ruin” we
mean we do not want triangles to flip. Further-
more we don’t want small and thin triangles,
because these are more likely to get flipped in a
mutation operation. Flipped triangles are not
so much of a problem when trying to approx-
imate 2D shapes, but one of the reasons that
they are unwanted in this context is that when
a triangle flips, we most often get three trian-
gles on top of each other. This is however not
beneficial when we as a secondary goal want
to minimize the number of triangles used to
construct the model, and as we come back to
later this problem is even bigger in 3D.

To avoid these flips and thin triangles we
check the shape of the triangle, after having
calculated the mutated version of it but before
applying the mutation to the triangle of the
individual. We calculate a ratio for each point
p defined as

this. For instance, the attempts we made to
get the move operator to make nice triangles
ended up giving us some new problems. Sim-

(the length of the side subtending to p)
/(distance from p to its subtending side).

These ratios have to be above a minimum thresh-

ple operators like add Triangle can also very
easily end up making overlapping triangles, be-
cause each triangle only knows its immediate
neighbours and it’s much too timeconsuming
to check the entire triangle structure to check
that every move is legal.

3 First approach: Finding 2D
shapes

To break up the implementation into smaller
steps we decided first to implement an EA rec-
ognizing 2D shapes.

3.1 Outline

In this approach we initialised the population
with individuals containing only one triangle
positioned in the middle of the frame. The
idea was to let this triangle evolve into the 2D
shape using lots of mutation, add triangle and
crossover, touching only the x and y coordi-
nates of the points. Input is one black and
white image depicting a solid white 2D shape.

old after the mutation and only if this is the
case we apply the mutation, else we leave the
triangle untouched.

One other major issue is that our imple-
mentation of the data structure only allows a
local view of the individual, that is a trian-
gle and it’s neighbours. But this is a problem
because mutate affects not only one triangle
and its immediate neighbours, but all triangles
sharing a point with the mutated triangle. So
by mutating one triangle we might flip another
without knowing. This problem however can
be solved in great extent by increasing the min-
imum ratio threshold mentioned above. Some
experimenting was needed though to find the
optimal threshold value because a value too
big didn’t prevent the flipping and a value too
small had the effect of locking a great deal of
the points. At the moment we do nothing to
prevent triangles from being too small. The
crossover operator described earlier gives rise
to the same problems as the mutation opera-
tor, and is harder to restrict and control. So
in this approach we used it with a very low
probability to avoid ruining our population.
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Because we start with one triangle in each
individual, we want this to grow, and we al-
low this by use of the add triangle operator
described above. With a certain probability
we decide for a given triangle edge if it has
no neighbours at that edge whether to add a
neighbour or not.

We choose the triangle among all triangles
in the individual with a certain probability,
which means that the more triangles in the
individual the less chance for a specific trian-
gle to be chosen. This gives rise to a problem
when dealing with non convex figures. In most
cases the EA ends up in a situation where the
only beneficial thing to do is to add a trian-
gle at a certain edge of the individual. But as
we’ve already created a huge part of the fig-
ure, (in most cases a convex part) we’ve also
got lots of triangles, and thereby low proba-
bility of adding a triangle the right place. At
this stage we did not do anything about this
problem because we would rather wait until we
knew how big a problem this would turn out
to be in the 3D case.

As mentioned above we have a fitness for
each triangle in an individual. We have tried to
use this in addition to the actual probabilities
to give the EA a hint of what to do with the
different triangles. We did this by calculating
the fitness for each triangle as follows:

fitness = (old fitness/2 + reward)

Where reward is -1 if the triangle is outside
the figure according to a random chosen point
and 1 if its inside the figure. Is this way the
fitness will be between -2 and 2 and we used
this fitness as an extra parameter for choosing
to add or remove. If the fitness was close to
-2 the probability of deleting the triangle was
high, if the fitness was close to 2 the triangle
had have been a good fit for several generations
and there by we try to add a new triangle at
its edge to see if this would be beneficial.

This method was not a great success be-
cause of two things. Firstly one sample point
per triangle is not enough. If say a third of the
triangle is outside the figure the triangle will
most likely have a pretty good fitness, even
though a third is way too much for the result
to be nice. Also the convergence towards 2 and
-2 respectively was too fast. So we decided to

have 10 samplepoints per triangle to be able
to calculate a better and more informative fit-
ness. We calculate this for each generation and
when used it is overwritten by the new fitness.

3.3 Results

We had pretty good results with this approach.
On testcases such as squares, and discs the
EA found near optimal triangulations of the
shapes. On non convex shapes the result was
not as good, because of the probability prob-
lem described above.

4 Second approach: Finding
3D models

In the second model we have tried to move into
3D space. This means that we now use the 2D
source images to construct a 3D model. In this
model each point now has an extra dimension,
and therefore the pure dimensionality of the
problem, and thereby the size of the search
space, is bigger. The overall number of tri-
angles needed to solve a problem is increased,
as the extra dimension is more demanding on
the flexibility of the model. As we shall see
the initial chromosomes in the population is
somewhat larger than in the 2D case.

4.1 From 2D shape recognition to 3D
model recognition

The first thing we did to begin recognizing a
3D model instead of 2D shapes was to just
use the 2D shape recognition algorithm with
shading of the triangles. The fitness now de-
pends on the difference between the pixels in
the source image and the pixels in the rendered
image. Some of the problems in 2D got even
worse in 3D, and some new problems arose.
Originally we thought that the move to
3D would help the algorithm, because the ex-
tra information in shading would restrict the
way the algorithm could use the triangles. We
thought that the increase in dimensionality and
the use of shading would give the algorithm
another way of recognizing the overall shape.
This would therefore help the algorithm in get-
ting rid of the ”ugly” triangle configurations,
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as these configurations would not make useful
shadings.

Unfortunately this was not the case. The
algorithm seemed to create a population that
would quickly get stuck in a local extreme be-
cause of an ”illegal” configuration of triangle.

The flipping and overlapping of triangles
were also a problem in 3D. Now we were even
faced with the difficult task of defining what
a flip and overlap was. This problem will be
called ”illegal” triangle configurations.

To start solving the problem in 3D we started

out restricting the algorithm. This was done
by not letting the algorithm itself grow a shape,
but instead laying out a grid of triangles. For
experimental purposes we sometimes restricted
the algorithm to a mutation in the axis of the
camera, in order to speed up the algorithm
for certain source images. The detection and
correction of flipping and overlapping has not
been implemented yet.

4.2 Data-structure

The datastructures used to record the chromo-
somes are almost equal to the 2D datastruc-
tures. Only now we record the third dimension
as well.

4.3 Recombination and mutation

By restricting the model to use a grid, we had
a controlled environment in which to make ex-
periments. Therefore we did not use any oper-
ators that could destroy the grid. This means
that add-edge, remove-edge and split-half were
not used in the later experiments.

At this point we did discover an interesting
feature of probabilities. It turned out that the
high probability of moving points connected to
many triangles was a problem for the EA. This
resulted in some spiky landscapes. This prob-
lem was remedied by creating a new way of
selecting points so they all got the same prob-
ability. It was still a problem that our fitness
evaluation didn’t take the area of the triangles
into account. This will also result in a skew of
the probabilities of mutation.

The result of the first set-up was not op-
timal, the symptom being very slow conver-
gence. It seemed that the EA was not able

to remember the good configurations of trian-
gles. We interpreted this in two ways. First of
all, an area, which in our eyes had developed
a good configuration, could suddenly vanish.
Secondly, mutating points to make good trian-
gles could make others worse, and the proba-
bilistic selection of points could skew the land-
scape very much. Both the area of the trian-
gles, the other triangles sharing this point and
their area, would decide the outcome in respect
with the fitness calculation of this triangle.

We tried to solve these problems in a heuris-
tic way, by giving the EA some help. To help
the EA recognize ”good” configurations of tri-
angles we made the recombination of two par-
ents select which of the pair of points from the
two parents to give the child, taking into ac-
count the fitness of the point. The fitness of
the point is the average of the fitnesses of the
triangles. Unfortunately this did not seem to
solve much. This could have something to do
with the fact that a “good point” cannot be
easily transferred from one chromosome to an-
other.

The problem with the destruction of good
triangles is not so easily solved. A triangle hav-
ing the right angle, measured with the shad-
ing, might not be in the right position along
the axis of the camera in the simple set-up
for the second model. The way we tried to
regulate this, was to let the triangle move all
points if it had a good fitness, and move only
one point of it had bad fitness - With a certain
definition of bad and good. Locally this will
help the algorithm, but globally the triangles
we are trying to preserve could easily be de-
stroyed by other triangles sharing a point with
the triangle.

5 General analysis of problems

As can be seen from the two different approaches,
we have had several problems with the conver-
gence of the algorithm.

The majority of our problems clearly stems
from the huge search space and the topology
of the search space.
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5.1 The dimensionality of the search
space

The coordinates of the points in the shape or
model span the search space. A model with
only one triangle already has 3 dimensions of
float’s. If we have n faces the number of dimen-
sions will be between ((n+4)/2)*3 and (n+2)*3.

N 4 10 30
Min 12 21 81
Max 18 36 156

Table 1: Some examples with different
amounts of triangles (N). Min and Max are
the corresponing minimum and maximum di-
mensionalities of the problem

In the calculation of the minimum num-
ber of dimensions we have presumed that the
graph is a connected planar graph, which is
never the case, so this is overly optimistic. On
the other hand the maximum number of di-
mensions is overly pessimistic because it pre-
sumes that every face is only connected to one
other face. This would rarely give a good con-
figuration of triangles when recognizing a model
in 3d.

5.2 The topology of the search space

In testing our algorithm we have experienced
several problems that could be traced back to
the topology of the search space.

One of the most serious problems about the
search space’s topology is, that an arbitrary
configuration of the triangles in a chromosome
may have several features that do not help it
in converging to a model that could resemble
a source image under the OpenGL rendering.

In 2D we can clearly define a flip of tri-
angles or intersecting triangles, which are not
wanted. But in 3D this will have to be gener-
alized to not wanting self- intersecting shapes,
even though one could imagine these to be
helpful in some situations. Because the re-
striction is now on the whole shape, the time
to check and correct this situation is probably
much too big. Furthermore there is no easy
way to ”correct” a configuration of triangles,
as explained earlier in the 2D case.

Another feature of the search space has got
to do with the way the triangles are intercon-
nected. Each triangle is dependent upon its
neighbours, and therefore a single triangle can
contribute with a good fitness without it ac-
tually contributing to a good configuration of
triangles. This also explains the way rather
lousy chromosomes get a good fitness.

Without proof we also state that the search
space is rather bumpy, with large local extrema
which have a very flat configurations of tri-
angles, very bumpy configurations of triangles
or "illegal” configurations. The flat configura-
tions can be escaped, but the bumpy config-
urations and "illegal” configurations are very
hard to escape. This has alot to do with the
interconnectedness of the triangles.

5.3 OpenGL rendering and fitness eval-

uation

Our implementation uses openGL flat and gouraud

shading. This simple setup gives us several
problems. First of all, standard openGL flat
and gouraud shading is very primitive, the pic-
tures rendered can be very ambiguous in re-
spect to the 3D model. Some ambiguity might
me solved by giving several source images from
different angles, but this has not been imple-
mented yet. Another problem with this ambi-
guity is that triangles that are not in a good
configuration might still get a good fitness.

An example of this is the picture below
of a pyramid seen from above. The program
tried to create this pyramid shape by making a
bumpy landscape for dark colors and flat land-
scapes for bright colors. It is extremely hard
for the algorithm to move the center point all
the way to the top.

5.4 So what can we do?

First of all we can restrict the dimensionality
of the problem by using heuristics about the
mutation and recombination of chromosomes.

Secondly we can calculate the fitness in
some other way to better reflect a good in-
dividual in our eyes.

Third, we can mentally divide the chromo-
some into subindividuals, which are the tri-
angles. The triangles work together in a sort
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Figure 4: Pyramid input image

of symbiosis. This way of looking at the prob-
lem also clearly shows us the way each triangle
only has a local view of the world. By realizing
this, we can use the fitness of triangle to cre-
ate heuristics (or evolve) for the chromosome
fitness, recombination and mutation. This has
been implemented but not used enough, be-
cause it is difficult to create good heuristics.

Fourth, more source images and a more re-
alistic rendering might solve some of the am-
biguity concerning the 3d models.

A fifth idea is to add several kinds of mem-
ory to the triangles and points. One idea is for
a triangle to remember a number of optimal
relations between it’s three points. Another
idea is to add some basic swarm intelligence,
that each point remembers the direction it is
moving in if it’s fitness increases, and keeps
moving that way.

6 Conclusion

During our long work process with this project
we have come to the conclusion that this prob-
lem is probably too hard for a standard EA.
For better results with this problem, one would
have to try some of the alternative heuristic
techniques as presented in the previous sec-
tion.

7 Location of Code

The code can be found in the directory:
/users/mosegard /kurser /toep/opg2/
In this directory there are two directories,
2D and 3D, that contain the two different ap-
proaches. They are compiled using make and

run with the command cgpl. They only work
on linux machines. Zip versions 2D.zip and
3D.zip can be found in the opg2 directory. The
input image is “test2.rgb” for both of the pro-
grams.

The tex files for this report can be found
in the directory:

/users/u981334 /ea/report/group_04/

The ps file main.ps can be found in the
directory:

/users/u981334 /ea/report/

8 Program customization

8.1 2D Program

To change mutation probabilities for the pop-
ulation, change lines 8-10 in the file Popula-
tion.cpp. To change mutation probabilities for
the chromosome change lines 420-423 in the
file Chromosome.cpp.

8.2 3D Program

To change whether or not gouraud shading is
wanted in the 3d version, change the booleans
in lines 23-25 in the file Mafi.cpp. To change
mutation probabilities for the population, change
lines 19-21 in the file Population.cpp. To change
mutation probabilities for the chromosome change
lines 571-576 in the file Chromosome.cpp.
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Investigation of Different Fitness Functions for the
Dynamic Job-shop Problem

Jon Fogh and Peter T. Nielsen

Abstract— This paper further investigates
the idea of using penalty function in combi-
nation with fitness functions in evolutionary
algorithms, to make flexible schedules for
the dynamic job-shop problem. Two new
penalty functions is suggested, tested and
compared to all ready known, well working
penalty functions. One of the new penalty
functions looks promising but need further
investigation and testing, while the other is
showed to be no good.

1 Introduction

Some of the hardest problems to optimise and
at the same time some of the most encoun-
tered problems in the real world are dynamic
problems. A dynamic problem is a problem in
an environment that changes over time. When
trying to optimise a static problem, that is a
problem that is in an environment that does
not changes over time, you are looking for the
perfect optima. In a dynamic problem you will
also be looking for a perfect optima but in a
dynamic problem the perfect solution may be
very different from the static problem, since
in a dynamic problem you have to take into
account, that the problem might changes the
second after you have found your optima. So
when you search for an optima for a dynamic
problem, you have to try to predict what’s go-
ing to happen in the future. You try to find
the optima solution which not only is a good
solution to the problem as it looks like at the
present time, but also a solution which is able
to handle changes in the environment in a rea-
sonable way.

In this paper the dynamic stochastic job
shop scheduling problem is investigated in con-
nection with different fitness functions in an
evolutionary algorithm. The job shop problem
as we define it, is a problem describing a floor
of an industrial factory with m machines and
n jobs each consisting of a variable number of

operations. The operations in a job, each have
to run on a different machine and the opera-
tion ¢ have to run before operation j for i < j.
For m > 2 the problem is NP-hard [5].

The dynamic part of the job shop problem
consists of jobs arriving at different times. The
dynamic job shop problem can be seen as con-
sisting of several static problems. Every time
a new job arrives you have a new static prob-
lem that have to be scheduled. This way you
end up with having a series of slightly different
static problems. The problem is described in
more detail in section 4 on the experimental
set-up.

The dynamic job shop problems can be
minimised for different performance measure-
ments like when the last job is finished, the
mean flow time of the jobs or the tardiness for
the jobs. Tardiness is the difference between
the duration of the job and the time it actual
takes to manufacture the job. For instance if
a job consist of 5 operation each with dura-
tion d;, and in the schedule the first operation
is scheduled to start at t, and the last oper-
ation is finished at t;,. Then the tardiness is
(ty —ta) — So0_, d;i. We are in this paper look-
ing to minimise tardiness.

Our approach is inspired by [4] where the
authors experiment with the use of penalty
functions to get anticipation in the dynamic
job shop problem. A penalty function is a way
to favourite the individuals in the population
that have wanted properties. For instance the
penalty function in the [4] gives a penalty to
the individuals in the population representing
a schedule with early idle time on the ma-
chines. This way you will after a number of
generation have a population that have few
individuals representing schedules with early
idle time. A schedule with little early idle time
has the idle time latter on in the schedule and
therefore it might be easier to reschedule when
a new job arrives.

We will in the following investigate differ-
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ent penalty functions and the effect they have
on the tardiness for a job shop problem. We
are trying different penalty function and com-
bination of these. The ideas to the penalty
functions all came from our intuition on what
would be the fastest way to get jobs made in a
factory and on the same time be able quickly
to reschedule. For instance one of the penalty
functions gives higher penalty to schedules with
small operations in the beginning. This is from
the idea that it is easier to reschedule the jobs
when a new job arrives, when there are only
small operations left from the old jobs. An-
other idea is to try to get as many jobs as pos-
sible finished as quickly as possible, so when
a new job arrives there are the smallest num-
ber of old jobs left to reschedule. The fitness
functions is described in detail in section 3

Besides the penalty function the algorithm
is close to a standard evolutionary algorithm
with selection, crossover and mutation. The
algorithm and operators is along side the rep-
resentation of the schedules described in sec-
tion 2. The representation used for the sched-
ule problem is a sequence of integers also known
as the permutation representation. The inte-
ger represents a job and is in the gene once for
each operation in the job. Therefore to get the
schedule represented by an individual in the
population a schedule builder is needed. The
schedule builder we are using is a non-delay
schedule builder and the reason for this is also
described in section 2

The structure of the paper is as follows:
Section 2 describes in detail the algorithm, op-
erators, representation and the choice of sched-
ule builder used. Then in section 3 the various
fitness functions and the ideas behind them
are explained. In section 4 the results we have
found and how we got them is described. Fi-
nally the paper ends with a conclusion on the
achieved results and why they are as they are.

2 Algorithm

In the following the algorithm is described in
detail. As all ready mentioned the algorithm
is close to a standard evolutionary algorithm.
The only difference is that the fitness function
is more advance in the sense that it uses a
penalty function. The fitness functions and

the penalty functions is described in 3.

The main loop of the algorithm is therefore
as known from a standard EA and can be seen
in figure 1

population.init(popSize);

while(t<generations) {
population.evaluate();
population.selection();
population.crossover (crossoverRate) ;
population.mutation(mutationRate) ;
population.evaluate();
t++;

}

return population.getBestIndividual();

Figure 1: Main loop in the used algorithm.

As all ready described the dynamic job shop
problem can be considered as a series of static
job shop problem. Every time a new job ar-
rives a new static problem is formed. The
static problems are closely related and there-
fore the individuals found in the old problem
can give you a leap start in finding the best in-
dividuals for the new problem. Therefore 50%
of the old population are used in the new pop-
ulation. The rest of the population is, as the
start population, randomly created. The pop-
ulation size is kept constant on 100 individuals.

The number of generation in each static
problem is, as in [4], calculated on basis of the
number of operations in the problem. More
precise the number of generations is half the
number of operations in the problem. This
way a problem with many jobs, and therefore
many operations, gets more time to find the
best solution.

2.1 Representation

The representation is know from other prob-
lems such as the travelling salesman problem,
as described in [5]. The genes in this repre-
sentation is a sequence of integers where each
integer, in the dynamic job shop problem, rep-
resent an operation in the job having the same
number as the integer. So in a chromosome
there might be five j's, if job number j has five
operations. The first j then represent the first
operation in job j and so on. The size of the
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chromosome is then

Zj#jobs Z?Eoperation operationji
The disadvantage with using this representa-
tion is that you need a schedule builder which
is described in section 2.3 and the advantage
is that since the schedule builder is used every
individual represent a feasible schedule. The
representation of the schedule as permutation
of the job numbers also helps in designing the
operators used in the algorithm because the
usual operators used in connection with per-
mutation representation can be used.

2.2 Operators

The paper by Branke and Mattfeld [4] was
the inspiration for this paper and the results
found in this paper is later compared to the
results found in [4]. To get a fair comparison
we have chosen to implement the same oper-
ators as Branke and Mattfeld. We have also
tried others operators but they are not tested.

Crossover

The crossover operation is one often used on
permutation representations and is called PPX
- Precedence Preservative Crossover. The PPX
crossover uses a mask filled with 1 and 2 to
choose between parent 1 and parent 2 to form
the offspring. In figure 2 is an example of a
PPX crossover with genes of size 6 represent-
ing a problem with three jobs each with 2 op-
A closer investigation of the PPX
crossover operator in connection with the per-
mutation representation can be found in [2]

erations.

parent 1 321231
parent 2 213213
mask 122121
Offspring 3 21213

Figure 2: An exempel of the PPX crossover.

Mutation

Again the mutation operator used in this pa-
per is chosen only because it is used in [4]. The

operator used here is the move mutation oper-
ator and it is very simple. It picks a random
gene in the chromosome and moves it into a
new position. An example can be found in fig-
ure 3

Before mutation 3 2 21 3 1

After mutation 3 23 2 11

Figure 3: An example of the move mutation
moving gene number 5.

Selection

The selection used in the algorithm is tourna-
ment selection of size 2 with an elite of one,
where the individual can be in a tournament
several times.

2.3 Schedule builder

There are two types of schedule builders, Non-
delay and active. A non-delay schedule builder
simple starts an operation as soon as possi-
ble. This is a local greedy way to avoid early
idle time for one machine. The objective is
to avoid early idle time on all machines and
this is where the Branke-Mattfeld fitness func-
tion comes in to the picture, because it gives
a penalty to individuals with early idle time.

An active schedule builder on the other
hand checks to see if there is an urgent op-
eration, which can be processed in the near
future. This means that an active schedule
builder can make schedules where a machine
waits for an urgent operation instead of pro-
cess the first possible operation. This of curse
gives some idle time in the schedule.

Therefore it sounds like the Branke-Mattfeld
fitness function in combination with an active
schedule builder would be the perfect choice
for the dynamic job shop problem. Our repre-
sentation does not allow for operation to have
priorities and we chose not to implement, what
you could call a semi-active schedule builder,
where the last operation in a job always is an
urgent one.

The fact that we have chosen the permuta-
tion representation and not to implement any
form for active schedule builder will not give
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us the best possible result with the Branke-
Mattfeld fitness function and our own fitness
functions. The reason for choosing a non-delay
schedule builder is that it is simpler then an
active schedule builder to implement and the
focus in this paper is on different fitness func-
tions. In [4] the results have proven to get
better with an active schedule builder and the
same would probably count for the fitness func-
tions in this paper.

3 Fitness Functions

Since we are decomposing the Job Shop Prob-
lem into deterministic sub-problems, which are
solved successively, the problem’s dynamics are
ignored. We have in our implementation de-
cided to transfer good individuals from the
previously sub problem to the current sub prob-
lem, since it has been shown in [3] [6] that this
approach has been proven successful. The idea
in this approach is that the algorithm, tries
to learn from the past and thereby transfer-
ring some information on promising areas of
the search space. In this paper, we propose
different penalty functions to integrate a form
of anticipation into the algorithm, by giving
the algorithm some simple guidelines to main-
tain its flexibility and suitability, needed for a
better rescheduling. All the fitness functions
proposed in this paper are extensions of the
tedious fitness function, minimizing the tardi-
ness of a schedule. Our fitness functions con-
sisting of the tedious function combined with a
penalty function are in the end of this section
compared to the tedious fitness function and
the fitness function proposed in [4]. The latter
of those use a combination of tardiness ¢ and
idle-time penalty p. Normalizing both values
to the interval [0 ...1] the fitness value for an
individual in the Branke-Mattfeld fitness func-
tion would be:

pi—min{p;}
maxj{p;}—min;{p;}

fi o tifminj{tj} +a

— maz;{t;}—min;{t;}
Figure 4:
With the parameter alpha being the weight-

ing factor. Both fitness function described in
the following, is inspired by Branke & Mat-

tfelts solution with a penalty function, but in-
stead of punishing early idle-time, we have de-
cided to punish a schedule for either running
small jobs in the beginning of a schedule or for
choosing a job with many operations in the
start of a schedule. Both choices will be de-
scribed in the following section.

The first penalty function we made, was
based on the idea that it seems easier to resched-
ule smaller than larger jobs, since a larger job
clearly suspends a machine for a longer period
than a smaller job. In other words, when a new
job arrives, the front part of the schedule will
be fixed permantly, while the backlog may be
rescheduled according to future needs. It is in
this step, that our intuition says, that it would
be easier to reschedule smaller jobs. Therefore,
we suggest to explicitly penalise small jobs,
that starts early in a schedule, in addition to
the original fitness, i.e. the tardiness of the
schedule. Consider the two schedules pictures
in figure 5. Both may have the same tardi-
ness, but they differ in their distribution of
small jobs. Schedule A has a larger amount of
small jobs started early in the schedule, while
B has scheduled the larger jobs in the begin-
ning. Thus out fitness function would give
B a better fitness than A. As in the case of
early idle-time, the penalty is weighted with a
decreasing function, but in our case we have
chosen to let the function be exponential. The
reason is that tests showed, that a linear func-
tion wouldn’t punish an individual enough, for
having a huge amount of small jobs in the start
of its schedule. Thus our first fitness for a in-
dividual I, where we use a combination of tar-
diness ¢t and a penalty p for small jobs with
early start time is given by, the same equation
as in figure 4, but with p being the penalty
calculated with our new penalty function.

If the first function seems very simple, the
second may seem even more trivial. Here the
penalty function is trying to finish as many
jobs as possible in the beginning of the sched-
ule, by punishing an individual if it schedules
an early start time to an operation from a job
with many operations. The underlying idea in
this approach is to finish jobs with few oper-
ations as soon as possible. By doing this we
avoid the scenario, were a job which have fin-
ished all of its operations except one or two,
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builds up a huge tardiness since its few re-
maining operations keeps getting rescheduled,
without ever getting an early start time. As a
consequence, in the second approach in addi-
tion to the mean tardiness fitness, we propose
a penalty function favouring the early schedul-
ing of operations from nearly completed jobs.

Consider the two schedules depicted in fig-
ure 6. Again assuming the tardiness of both

schedules being equal, our approach would favour

schedule B instead of schedule A, since B fin-
ishes the small jobs very early in its schedule.
As in the case with the latter penalty func-
tion, the amount of penalty on an operation
depends on its start time, thus the penalty is
weighted with a linearly decreasing function.
With this in mind, the fitness function for an
individual equals that in figure 4, but with our
new penalty function as p and where a again
is the weighting factor.

Among the other penalty function that we
considered is the two negations of the pro-
posed functions. That is the functions favour-
ing small jobs in the beginning of a schedule
and operations from larger jobs getting sched-
uled earlier than operations from smaller jobs.
These functions have been implemented but
not tested, so no results are available yet. The
same goes for combinations of all the proposed
functions, including the Branke-Mattfeld fit-
ness. Our intuition tells us, that especially our
proposed fitness function could benefit from a
combination with the Branke-Mattfeld fitness,
since all the proposed penalty function actu-
ally isn’t punishing early idle-time, hence we
feel that a combination would only make the
proposed function even stronger. All combina-
tions with Branke-Mattfeld have been imple-
mented, but at this stage aren’t tested due to
lack of time.

4 Results

The simulation environment used in the fol-
lowing is widely used for simulating manufac-
turing systems e.g. [4] [1]. The workload in
a manufacturing system depends on the num-
ber of operations in the system, which await
processing, i.e. the inter-arrival times of the
operations can tell whether a system has a
high or low workload. Thus the mean inter-

Machine1 §

Machine 1

Machine 2

Machine 1

Machine 2

Machine 1

Figure 5:

\
7

Figure 6:
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arrival time A can be prescribed by dividing
the mean processing time P by the number of
machines m and a desired utilisation rate U,
i.e. A = P/mU. The other attributes in the
simulation environment is defined by the fol-
lowing attributes:

1. The system consists of 6 machines.

2. Each job in the system passes 4 to 6 ma-
chines resulting in an average of 5 oper-
ations in each job.

3. The machine order in an operation is gen-
erated randomly from a uniform distri-
bution.

4. Each operations processing time are uni-
formly distributed in the range [1,19] re-
sulting in a mean processing time of

P=5%10=50

5. The inter-arrival times are exponentially
distributed based on A by using different
utilisation rates U.

6. The utilisation rate U is either 0.7 or
0.9, representing a relaxed or an exces-
sive workload. Normally the utilisation
rate 0.8 representing a moderate work-
load is also tested, but due to lack of
time we have chosen to omit this rate.

The simulations have been run with a pop-
ulation size of 100 individuals, fitness tourna-
ment selection with an elite of one, the PPX
crossover with probability of 0.6 and the ” move”
mutation operator with a mutation rate of 0.1.
For each parameter setting for a and U. Ten
different simulation have been performed each
consisting of 500 jobs. In each simulation job
1 to 100 and 401 to 500 have been discarded in
order to circumvent distortion effects [3]. Thus
the following results are calculated as the mean
tardiness of job 101 to 400 averaged over 10
We are aware that 10
simulation isn’t enough to prove the efficiency
of a fitness function, but it may be enough
to get an idea whether a function is useful or
not. Hence a further investigation is required
to test the actual efficiency of the function.
With this in mind the goal of this investiga-
tion is to shed light on whether the two pro-
posed function could be expected to improve

different simulations.

the mean tardiness in the Dynamic Job Shop
Problem. For each U € {0.7,0.9} and o €
{0.25,0.50.0,75,1.00} experiments are performed
to investigate which role the parameters play’s
in the two functions.

/U 0.7]09
025 | 18 | 27
0,50 | 15 | 24
0,75 | 15 | 29
1,00 | 12 | 28

Figure 7: Results for Branke fitness function.

Figure 7 lists the improvements with the
Branke Mattfeld fitness in percent against EA
runs with just tardiness considered as fitness
(o = 0). This table is only included to illus-
trate, that we may have been a bit unlucky
with our tests with U = 0.9, since the improve-
ment with the Branke Mattfeld fitness is con-
siderable better than described in [4]. From
Figure 7 we see that the results almost equal
the ones obtained in [4], although the improve-
ment with a utilisation rate of 0.9 is relatively
larger in our tests, this indicates the results ob-
tained for the simple tardiness fitness should
be regarded as a bit higher than the actual
value.

/U 0.7]0.9
0,25 | 33| 19
0,50 | 5 | 24
0,75 | -19 | 8
1,00 | -7 | 5

Figure 8: Results for large operation first fit-
ness function.

Figure 8 lists the improvements with the
”large operations first” fitness in percent against
EA runs with just tardiness considered as fit-
ness (¢ = 0). From the table it seems clear
that the ”large jobs first” fitness don’t look
that well. With a workload of 0.7 it is increas-
ing the mean tardiness with more than 30%, as
described earlier the improvements with U =
0.9 is possible due to lack of simulations. The
fitness function could possible be improved by
combining it with the Branke- Mattfeld fitness,
since in the implementation of the ”big oper-
ations first” fitness, we actually are reward-
ing early idle-time. Another reason behind the



Topics of Evolutionary Computation 2001 37

EVALife, Dept. of Computer Science, University of Aarhus

poor results might be, that fixing the large op-
erations in the beginning of schedule, results in
the schedule being choked in huge operations,
giving the small operations a relatively huge
tardiness.

a/U 0,7]09
0,25 | 15 | 31
050 | 5 | 29
0,75 | 5 | 27
1,00 | 5 | 30

Figure 9: Results for minimise jobs fitness
function.

Turning to the ”small jobs first” fitness the
results gets more amusing. Figure 9 lists the
improvements with the ”small jobs first” fit-
ness in percent against EA runs with just tar-
diness considered as fitness (« = 0). Admit-
ted the results don’t look that impressing with
U = 0.7, but even though the improvements
only where about 8% in average, these results
hadn’t the variance we observed in the Branke-
Mattfeld fitness, which could be useful in dif-
ferent applications. With a utilisation rate of
0.9, the "small jobs first” fitness actually beats
the Branke-Mattfeld fitness and even though
10 simulation isn’t enough to prove this penalty
function is better with a high workload than
Branke-Mattfeld its gives us a hint in that di-
rection and should be tested in the future. Like
in the case with ”large operations first”, we
dosn’t punish early idle-time in ”small jobs
first”, so another interesting idea could be to
add a idle-time penalty to the “small jobs first
fitness”.

Summarising the results presented for the
large operations first indicates that this way of
penalising an individual isn’t the right way to
go, since almost all values of & combined with a
workload of 0.7 only makes the mean tardiness
larger, while the improvements with U=0.9,
might disappear when running more simula-
tion, although this needs further investigation.
Different is it with the ”small jobs first” fitness,
almost all parameter settings shows promis-
ing results, especially the results with U = 0.9
looks very promising since we manage to beet
the Branke-Mattfeld fitness in this area. Re-
membering that the ”small jobs first” fitness
doesn’t punish early idle time so a combina-

tion with Branke-Mattfeld looks very promis-
ing and should be tested in the future work.

5 Conclusions

In this paper we have explored two different,
but very simple ways of penalising a sched-
ule to improve its flexibility regarding adap-
tion to changes in the enviromenment. The
first way is favouring large operations in the
beginning of a schedule, since intuition tells us
rescheduling small jobs seems easier than large
jobs. The second idea tells the scheules to fin-
ish jobs consisting of one or two operations as
soon as posible in schedule, which would de-
crease the number of jobs in the simulator and
hence might give a better result.

Our results showed that favouring opera-
tions from small jobs in the beginning of a
schedule might improve the performance, exspe-
cially with an excessive workload. The ”small
jobs first” fitness showed remarkable results
with improvements up to 30%. But with only
10 simulations with each parameter setting, we
don’t feel we have enough information to give
an estimate on how much this penalty function
improves the performance, hence further tests
are needed.

The results obtained with the ”large op-
erations first” penalty function where mixed.
With a relaxed workload the penalty function
actually increased the mean tardiness by up
to 30 %, while it actually yielded excellent im-
provements with a excessive workload. Despite
the latter we dont think any improvement in
performance could be gained from this func-
tion.

There remains nummerous areas for future
research. First of all, the actual effect of the
"min jobs first” penalty function should be
tester further, since 10 simulation isnt enough
to give an estimate on how well the function
perfomance compared to other function e.g.
the Branke-Mattfeld fitness. Another inter-
resting field for further invistegation is the com-
bination of the Branke-Mattfeld fitness with
the ”min jobs first” penaly, since the latter ac-
tually rewards early idle-time, hence a combi-
nation is likely to yield even better results.
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Evolving Robot Behaviours

Martin Knudsen, Lars Nielsen, and Tomas Toft

Abstract— The objective of this paper is
to describe the development of three Khep-
era robot behaviours using a genetic algo-
rithm (GA). The behaviours were evolved
using a custom designed simulator and trans-
fered to the real world. The evolved be-
haviours all performed satisfactory in the
simulator. However, only one transferred
successfully to the real world, mainly due
to oversimplified aspects in the simulator.
It is concluded that using elitism seems to
improve GA performance when confronted
with noisy, dynamic fitness functions.

1 Introduction

The original aim of the project was to evolve
a robot controller for playing robot soccer and
transfer it to the real world. The idea for this
was to use a behaviour based approach with a
central decision maker and several simple be-
haviours. The decision maker was planned as
a motivation network, however due to lack of
time it was not implemented. The behaviours
could be either hand-coded or evolved.

For evolving, two possibilities were consid-
ered: genetic programming or evolving param-
eters for a hand-coded behaviour with a ge-
netic algorithm (GA). We chose the latter for
this project.

The reason for not using genetic program-
ming, was that we had a reasonably good idea
about the optimal algorithm (find ball, goto
ball, shoot ball into opponents goal). For the
behaviours it was the same, we had an idea,
but needed to tune the parameters. We did
not want the GA to spend time “reinventing
the wheel”.

Having decided on implementing and run-
ning only the simple behaviours, we looked
for a simulator, but found none that met our
demands. They were either too specific (fine
tuned for one task) or too general (modelling
details to a degree we did not need, while leav-
ing out details important to us). In both cases
we would need to extend the simulator to fit

our needs. Thus we decided to implement a
simulator of our own. The simple behaviours
were then evolved in the simulator, and finally
transferred to the real world.

2 The world

This section describes the real world environ-
ment of this project. Furthermore we discuss
the use of genetic algorithms for real world
problems.

2.1 The Khepera, ball and environ-
ment

il

T (il

Figure 1: The Khepera robot (5 cm. dia.)

Figure 1 shows a Khepera robot. It is ap-
proximately 5 cm. in diameter and has two
wheels with separate motors. The square shaped
chip on top of it is a processing unit that pow-
ers a real time Operating System. The robot
communicates by serial communication with
the outside world, but can run fully autonomous
using on-board batteries as well. The basic
module has only one type of sensor that mea-
sures the proximity of objects by means of re-
flected light. 8 proximity sensors are placed
on the side of the robot, 6 distributed on the
front and 2 placed to the rear. Several plug-in
modules exist, among which a 64 pixels B/W
camera is the most interesting with respect to
soccer playing robots. Each pixel has a reso-
lution of 8 bits going from dark to bright.
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Figure 2: The soccer pitch

The bounding world of the Khepera robot
consists of a soccer pitch as depicted on figure
2. The pitch is lit by two powerful projectors
casting indirect light ensuring close to uniform
light conditions. The ball used during soccer
matches is a yellow tennis ball. Competing
robots wear black and white stripes to distin-
guish them from walls, goals, and the ball.

2.2 The GA and the world

Since the aim of this project is to evolve robot
behaviours using a GA, the question of how to
calculate fitness of individuals becomes urgent.
One could test and evaluate each behaviour
manually using a real robot, ball, etc. How-
ever, time consumption alone (several minutes
per evaluation) makes this approach intract-
able in practice. The counter strategy is to
perform fitness calculation using a computer
simulation of the real world. The main pur-
pose of building a simulator is that it can great-
ly shorten and automate this process. It might
be an idea though to combine the two ap-
proaches by letting a few generations of the
GA be performed using real robots now and
then, in an attempt to minimise the ’reality
gap’. This gap is traditionally the major source
of error in simulators since it is virtually im-
possible to model noisy physical environments
accurately. We have chosen to rely fully on a
simulator for evolving the behaviours.

2.3 Transferring from simulator to
reality

Deciding to use a simulator to evolve controllers
for the robot, we now face a new difficulty:
Transferring the evolved controller to the real

world. Even though the evolved behaviour works

perfectly in the simulator, this does not have

to be the case when the same algorithm is run
on a robot in the real world.

Nick Jakobi gives an approach in [2]. The
first difficulty one encounters, is that the sim-
ulator cannot possibly hope to simulate every-
thing. One must restrict oneself to simulate
only the important aspects. But even these
cannot be accurately modelled.

The second difficulty is whether the sim-
ulated aspects are correctly modelled. Or at
least modelled in such a way, that they can
be used in a similar way as in the real world.
Furthermore we must be absolutely sure, that
the evolutionary algorithm will not evolve any-
thing based on any part of the simulator, e.g.
always starting pointing ezactly towards the
ball (which cannot be reproduced in reality).

One way to get around that reality might
be modelled incorrectly is to add random noise.
But even this has to be done with caution, as
this adds a new aspect, that the genetic algo-
rithm can use, if it is given the chance. Several
runs of the simulator with different degrees of
noise have to be carried out to compensate for
this. Moreover, reality 4s a very noisy place
and if this noise is not modelled somehow the
evolved controller will end up behaving more
or less randomly, and will (probably) not ex-
hibit the desired behaviour.

Facing all these difficulties we begin design-
ing the simulator.

3 The simulator

The simulator is a so called minimal approach
designed to model only the most important is-
sues in the environment of the robot. It has
both a graphical and a non graphical mode.
The graphical mode is used mainly for debug-
ging, i.e. an intuitive way of validating the
simulator and checking the performance of be-
haviours. The non-graphical mode is for calcu-
lating fitness during GA runs, since the mas-
sive overhead due to painting etc. is redundant
here.

3.1 Implementation

The simulation is implemented using a discrete
model. Le. time is divided into so called time
steps. For each time step new positions of the
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moving objects are calculated by taking into
account physics like speed, acceleration, direc-
tion, energy, bouncing, and pushing. Since the
real world is a continuous environment the ac-
curacy of this approximation correlates with
the length of each time step. The shorter the
time step the better the approximation. We
have chosen a time step length of 20 ms There
are several reasons for this:

e The scheduler of the real-time OS on board

the Khepera robot works by assigning
each process a 5 ms time slot. Beside
the controller process, processes for up-
dating camera and other sensor inputs
are needed. 20 ms time steps hence al-
lows for 3 additional processes.

e The fastest sensors (proximity sensors)
update with 20 ms intervals, hence mak-
ing it redundant to process any faster.

e The camera updates at a maximum of 50
ms intervals. Having a time step length
equal to this or longer has the effect that
the camera is up to date in all calcula-
tions. This is not the case in the real
world.

Each time step the position of moving ob-
jects are updated, the different sensors are read
if they are ready, and finally the robot con-
troller is called to convert the new inputs into
actions (setting the speed on each wheel). The
modelling of physics of both sensors and mo-
tors has been based on the specifications in the
Khepera User Manual [3].

Up until now it is all quite simple. How-
ever, in the real world the different types of
physics modelled by the simulator are very noisy
and time varying. How should one cope with
that? We have chosen to use two strategies:

1. Ignore the aspect in the simulator, and
assume that some filter mechanism deals
with it in real life.

2. Approximate the physics and add plenty
of random noise to ensure controllers can-
not rely on them too much.

Among the aspects ignored are changing light
conditions. They affect the readings of both

camera and proximity sensors. However by as-
suming a filtering or calibrating module in the
sensor update processes, these aspects will be
transparent to the controller.

Among the aspects modelled in the simu-
lator are the unpredictable movement of the
tennis ball and the readings of the proximity
sensors. The fact that the ball is a tennis ball
makes it extremely difficult to model correctly,
since tennis balls have a characteristic lowered
line shaped like an ’S’ going around it. When
moving slowly this has the effect that the ball
can change direction suddenly. However, it
is possible to approximate this behaviour by
changing the direction by a random amount of
degrees with random intervals. At least this
makes it difficult for the controller to rely on
a perfect line of movement by the ball.

The proximity sensors are not modelled tru-
ly correct. In the real world they measure
proximity as a function of distance and angu-
lar deviation to an object and its colour. Our
simulator does not take the angular deviation
into account but distance and colour alone.
The effect is that sensors deliver values that
are increasingly more wrong the more objects
deviate from the sensor angle. This imposes
a clear potential to lower the chances of suc-
cess when transferring the evolved behaviours
to the real world. This lack in accuracy is def-
initely a candidate for future work.

Apart from these examples, focus has been
on adding adjustable noise to as many phys-
ical aspects as possible to enable us to avoid
evolved controllers adjusting their parameters
according to errors in the simulator rather than
to characteristics of the real world.

4 Simple behaviours

This section deals with the simple behaviours
that we developed for use in the simulator.
The main structure of the simple behaviours
are hand-coded. But each behaviour is speci-
fied by a set of parameters such as thresholds,
speed settings, and other values. We used the
parameters as genes and used a GA to evolve
them.
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4.1 The behaviours

The behaviours we have decided to focus on
are follow-wall, dribble, and obstacle avoidance.

They are not too difficult to hand-code in
the real world, but the aim here is to evolve
a controller for the behaviour, thus avoiding
having a human spending time fiddling with
the parameters. The objective is to make the
robot behave sensibly in the real world, not
just in the simulator. Another objective is to
examine how to define fitness functions. As we
shall see later on in section 6, this is far from
trivial.

Follow wall

This behaviour guides the robot along a wall.
If no such wall is found, it moves around at
maximum speed. The idea is described in fig-
ure 3.

forever {
if (too close to the wall)
turn away from the wall
else if (too far away from the wall)
turn towards the wall
else
drive straight forward

Figure 3: The follow wall behaviour

All we need to do now is to define too close
to, too far from, etc. (see figure 3) as func-
tions of the sensor readings and perhaps some
internal state, such that they can be used as
genes.

Dribble

The objective of this behaviour is to dribble a
ball as straight and as fast as possible with-
out losing touch of it. The behaviour is con-
trolled by parameters such as threshold values,
maximum speed values etc. The algorithm is
described in figure 4

Obstacle avoidance

The obstacle avoidance behaviour is “randomly”
walking around an area (the soccer field) with

forever {
if (the ball is not near us OR
the ball is right in front of us)

go straight

else if (the ball is to the right)
swerve to the right

else
swerve to the left

Figure 4: The dribble behaviour

several round, non-mobile objects. The ob-
jective is to move as fast as possible without
hitting walls or any of the objects.

forever {
if (no obstacles near us)
go straight
else if (more obstacles to the left)
turn to the right
else
turn to the left

Figure 5: Simple obstacle avoidance

The (easy) algorithm for doing this is mak-
ing a Braitenberg creature?. The algorithm (in
pseudo code) can be seen in figure 5. The gen-
eral idea is that if we see something in front of
us, we decrease the speed of the wheels (possi-
bly resulting in backward motion). Most weight
is placed on the front sensors, less on the sides,
and none on the rear ones.

To improve the robot, we have added a sim-
ple memory to the program, that remembers
if we are turning left or right, or just driving
straight. The purpose is to let the robot escape
narrow, dead-end corridors.

The code for this algorithm is seen in fig-
ure 6. It uses the simple obstacle avoidance
mentioned above.

5 Genetic algorithm

To evolve the various behaviours we have cho-
sen to use a standard genetic algorithm. Some
reasons for this choice are both simplicity and

“Braitenberg creatures are simple feedback con-
trollers, that transform sensor input directly to actua-
tor output (e.g. setting the speed of a motor) [1]
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forever {
if (not too much in front of us)
simple obstacle avoidance
else { // turning
if (last decision was not turning)
decide turning direction
turn in turning direction

}
X

Figure 6: Advanced obstacle avoidance

speed of the algorithm. Besides in our prob-
lem domain of robotics it is not of paramount
interest to get the exactly optimum solution,
which a more complicated GA would have a
better chance of finding. An almost optimal
solution is good enough for our application,
due to the nondeterminism of the fitness func-
tions.

5.1 Implementation

We use a real-encoded EA. One round of the
EA is described in pseudo-code below.

doRound ()

{
evaluate();
generation++;
select();
crossover();
mutation();

}

We use a tournament based selection scheme.
Two individuals are chosen randomly to com-
pete. The one with the best fitness survives to
the next generation. This implies that more
than one copy of a good individual can survive
- i.e. better individuals have a higher chance of
getting more copies of their genes to the next
generation.

Alteration of the population consists of first
applying a crossover operator and then a mu-
tation operator. The crossover operator is a
N-weight arithmetic crossover (i.e. a different
weight for each gene) We tried to use both
elitism and non-elitism. This was done be-
cause we would often loose the best individ-
uals.

The mutation operator used is a linear de-
creasing Gaussian mutation.

6 Fitness functions

Fitness functions are of great importance and
the design should be considered carefully. There
is a difference between fitness in the simulator
and the real world. In the simulator fitness
can be calculated numerically whereas in the
real world this is not an option. These issues
as well as fitness functions for the simple be-
haviours will be discussed below.

6.1 Simple behaviours

The following fitness functions were used for
the simple behaviours in the simulator. All
fitness functions are calculated as a weighted
sum of a number of terms. The fitness val-
ues are actually punishment values, hence the
GA tries to minimise the fitness. Each weight
determines the importance of one term :

n
5fitness = Z w;t;
i=1

Follow Wall

The behaviour aims at making the robot fol-
low the wall at a constant distance as fast as
possible without bumping into it. The robot
is placed close to the side wall facing it at a
30 degree angle. The fitness is calculated over
a period of 1 minute. At each time step the
following terms are updated and added to the
total fitness:

t1 = Deviation in distance to wall within
the last second.

1 too close to wall
ty = 1 too far from wall
0 otherwise

t3 = Deviation from maximum speed.

Dribble

The fitness of the dribble behaviour depends
on its ability to dribble the ball straight and
fast. The robot is placed facing the goal with
the ball right in front of it. The run ends when
the ball touches the end wall or a maximum of
30 seconds have elapsed. The terms are cal-
culated at the end of the run and depicts how
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well the behaviour has solved the task.

disty — distemin disty > distzmin
t1 = .
0 otherwise

disty — distymin disty > distymin
to = .
0 otherwise

t3 = time elapsed

where dist,, is the distance to the end wall,
and dist, is the deviation from the straight
line.

Avoid obstacle

The main aim of the behaviour is to avoid
bumping into objects, but at the same time to
move around as quickly as possible. Hence the
fitness parameters concern distance to objects
and robot speed. The robot is placed in the
football arena with a number of randomly dis-
tributed round objects of random size. Each
time step the following terms are updated and
added to the total fitness:

o 1 distopst < diSteojlision
1 0 otherwise

o — distejose — distopst  distopst < disteose
2 — .
0 otherwise

i3 = Speedmax - Speedcur

where dist.yjiision 1S the minimal distance
to an object defined as a collision.

distgose is the minimal distance the robot
is allowed to be near an object, before it is
punished.

6.2 Conflicting objectives

The main problem with designing fitness func-
tions in this domain is that the problems are
actually highly multi-objective. They all share
a conflict between precision and speed. One
needs to decide beforehand the importance of
each term, and this adds to the list of parame-
ters that needs tuning before running the GA.

We ran into a very illustrative example of
the importance of these weights during the evo-
lution of the follow wall behaviour. We acci-
dentally put too much weight to the term ¢;

describing how good it was at keeping a con-
stant distance to the wall. This (of course) re-
sulted in an evolved behaviour were the robot
stopped at an ideal distance to the wall and
just stood still. All behaviours that actually
dared to move were punished heavily for devi-
ating even the slightest bit in distance in com-
parison to the relatively small reward for driv-
ing faster.

6.3 Fitness in the real world

In the simulator a fitness function can be de-
signed and calculated objectively. When trans-
ferring a behaviour from the simulator to the
real world, one has to evaluate the behaviour
in the real world. This is done in order to
determine both the ability of the simulator to
model the real world and also of course to com-
pare evolved solutions with manual solutions.
Evaluations in the real world have to be done
in a more subjective way in our problem do-
This further complicates the transfer
from simulator to reality.

main.

7 Results

This section describes the results obtained by
running experiments in the simulator and in
the real world.

7.1 Results from the simulator

We ran the various behaviours in the simu-
lator, evolving them using the GA. We tried
both with and without elitism (the 3 best in-
dividuals of each generation will survive). One
important thing should be noted here, which
can also be seen on the graphs for the best fit-
ness. Since there is some random noise added
to the simulator, it is not guaranteed that an
individual with the same genes will obtain the
same fitness in two different runs. This is also
why the graph for the best fitness using elitism
is not strictly decreasing. The best individu-
als are copied to the next generation, but it
might be that they obtain a worse fitness, even
though the genes are the same, due to the ran-
dom noise.

20 runs of the GA were performed and best
fitness and average fitness of each generation
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were calculated. FEach individual behaviour
was run 5 times in the simulator with random
noise and the average fitness was used.

Dribble

See figure 7 for a graph showing fitness and
table 1 for GA settings for the evolution of the
dribble behaviour.

mutation rate 0.3
crossover rate 0.8
population size 50
number of generations | 50

Table 1: GA settings for evolving dribble

Best fitness - Dribble

T T
elitism
no elitism -------

Fitness

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Generation

Figure 7: Graph showing best fitness for drib-
ble.

Follow wall

See figure 8 for a graph showing fitness for the
follow wall behaviour and table 2 for GA set-
tings.

mutation rate 0.3
crossover rate 0.8
population size 50
number of generations | 50

Table 2: GA settings for evolving follow wall

Avoid obstacles

See figure 9 for a graph showing fitness for the
avoid obstacle behaviour and table 3 for the
GA settings.

Best fitness - Follow wall

T T
elitism
no elitism -------

Fitness

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Generation

Figure 8: Graph showing best fitness for follow
wall.

mutation rate 0.3
crossover rate 0.8
population size 25
number of generations | 25

Table 3: GA settings for evolving avoid obsta-
cles

Best fitness - Avoid obstacle

T
elitism
no elitism -------

Fitness

Figure 9: Graph showing best fitness for avoid
obstacles.

7.2 Results from transferring to real
world

We tried to transfer the best of the evolved in-
dividuals to the real world. This was done for
each of the behaviours described above. The
transfer tests the precision of the simulator and
the quality of the evolved behaviours. All be-
haviours were transfered directly to the Khep-
era Robot and run in the real environment.

e Dribble

The transfered version of this behaviour
performed very poorly in the real world.
It could not follow the ball for very long
periods of time - often it seemed that
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it had problems detecting the ball. The
primary reason for this is that in the real
world the ball is a 3D object and in the
simulator the ball is 2D round object,
which in 3D would correspond to a cylin-
der instead of a sphere. So since the sen-
sors of the robot are near the floor, and
the ball is of course round, this means
the equator of the ball is closer to the
robot than the bottom and top of the
ball. This would then make the ball seem
farther away than it really was. Another
problem is the incorrect modelling of the
proximity sensors in general.

e Follow wall

The main problem with the transfered
version, was that the robot would some-
times pull too far away from the wall.
The wall would then be too far away

from the proximity sensors to detect, which

would make the robot lose track of the
wall and stop following it. One major
reason for this, is the modelling of the
proximity sensors, that is not precise e-
nough, as described in section 3.1.

o Avoid obstacles

the graph for the non-elitism runs of the follow
wall behaviour (figure 8).

Concerning the simulator, we must con-
clude that implementing one is difficult. Try-
ing to design a minimal simulator quickly ends
up in fiddling with many parameters, and the
end product is far from minimal or simple.

Transferring the controllers to reality was
less successful than the evolution of controllers
in the simulator. Some of the problems are due
to oversimplifications in the simulator. The
noise in the real world is different than the
noise we modelled and the sensors reacted very
differently in the simulator than in reality.

However the obstacle avoider transferred
beautifully. We believe, that this was possi-
ble because it does not depend so heavily on
the imprecisions mentioned above. Further-
more the avoid behaviour is less complex than
the dribble and follow wall behaviours, which
are both regulating tasks.

The fitness functions also proved to be an
important area. Poor design of these easily
lead to evolving behaviours different from the
intended. The reason for this is, of course, that
although it is easy to describe the problem to
another human, giving a precise, mathematical
definition is far from trivial. More so the ob-

We observed that this behaviour performed jectives we found are actually combinations of

very well in the real world. Actually it
was much better than a simple hand-
coded obstacle avoider and much faster.
The only small problem could be seen if
some of the obstacles were balls, then the
robot would sometimes touch them. But
this is due to the same reason with the
modelling of the ball as described with
the dribble behaviour. The evolved be-
haviour was quite impressive to watch in
the real world.

8 Conclusion

We successfully evolved all three behaviours in
the simulator. Elitism, although usually con-
sidered leading to premature convergence, in
our case lead to keeping fit individuals alive,
particularly in the face of a nondeterministic
fitness function (due to noise). This seems to
lead to better individuals faster, without losing
too much diversity. In particular, considering

several, conflicting sub-objectives leading nat-
urally to a problem of multi-objective optimi-
sation.

9 Future work

e Improved simulator : Better modelling
of the proximity sensors and the ball!

e Motivation network : It would be nice
to put together all the different behaviours
into a fully functioning robot controller.
One way of doing this that we looked
into is to use a motivation network as
described by T. Krink in [4]. The idea
is inspired from biology and the basic
idea is to map the robot sensors and in-
ternal states to a number of motivation
variables. These mapping functions are
specified by some genes which can be
evolved. Each motivation variable cor-
responds to a behaviour. The behaviour
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with the highest motivation factor is then
chosen and executed.

e Advanced GAs : Using more advanced
approaches than a simple GA might im-
prove the performance. A co-evolutionary
approach or an island model might be
useful to improve the generality of be-
haviours.

e Multi objective optimisation : It might
prove very useful to attack the problem
of conflicting objectives by using a more
general optimisation technique than man-
ual parameter tuning.

e Manual runs of the GA : Running the
GA on real robots in the real world for
the last few generations means that we
don’t have to fine tune the controller in
the simulator. This might reduce noise
problems in the real world.
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Whist With a Twist

Karsten S. Jorgensen, Martin E. Jgrgensen, and Mads B. Enevoldsen

Abstract— This project aimed at produc-
ing a computer player for Ligeud, a vari-
ant of the Whist card game, using an evo-
lutionary algorithm. Two different repre-
sentations of the computer player strategies
were used with the algorithm. Both used
fuzzy logic to make decisions throughout the
game, but one proved decidedly better in
evolving.

1 Introduction

Whist is a family of card games along the fol-
lowing lines: in each game, the four players
compete to win the bid. The highest bid wins,
and the winning player decides the trump suit
and possibly also the card whose owner will be
his partner for this game. Play starts, and the
bid winner and his partner now must collect
the number of tricks stated in the bid. If they
succeed, they win some money (or points), if
not, they lose.

For the purpose of this project, we chose a
local variant of Whist, called “Ligeud”. The
aim was to create a computer player for Ligeud,
using an evolutionary algorithm. This report
describes two different representations used to
model the computer player strategies, a num-
ber of measures introduced to enhance the evo-
lution of strategies, and the experiments con-
ducted.

2 Representations

The first approach was to use a kind of fuzzy
logic with a great number of “Strategy Tops”
in R™. The second approach used an arith-
metic tree to represent a function f : R —
R together with a small constant number of
“Strategy Tops” in R.

2.1 Multidimensional fuzzy logic

As described in the introduction, a game of
Whist is roughly divided into two parts: bid-
ding and playing. Accordingly, we have di-

vided a strategy into two parts. Let’s first con-
sider playing, since bidding is somewhat more
subtle, and the representation used is more
easily explained for playing.

Playing

The decision to make during play is the follow-
ing: Given a set of cards and the knowledge of
which cards have been played in this game,
which card should we play now? Our aim was
to describe a function from the state space of
all things known to the player to a space of de-
cisions, which could be used to select the best
card to play at this point. Instead of selecting
a particular card, we divided the possibilities
into play-decision categories:

e Smallest

e Just under

e Just over

o Greatest

e Smallest trump

e Trump just under
e Trump just over
o Greatest trump

e Joker

where e.g. “smallest” means playing the
smallest non-trump card on your hand, and
“trump just over” means playing the smallest
trump card you have that is higher than the
best card on the table, thus (perhaps) collect-
ing a trick by beating the others by a narrow
margin.

At first glance it may seem that there is no
need for categories such as “Just under”, but
a moment of thought shows that it is a very
useful category indeed for e.g. the bid “Nole”
under which the player can get at most one
trick.
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A play decision category maps determinis-
tically to some card on the player’s hand, so
the strategy only has to decide what kind (or
category) of action it wants to take.

The state space was constructed from a
number of relatively simple parameters such
as: how many hearts do I have, what is the
trump colour, am I absolutely sure that the
player across from me is renonce in clubs, which
card has the player on my left played in this
round, etc. The complete list of these pa-
rameters, or dimensions, can be found in ap-
pendix 1.1. All in all, this amounted to a 37-
dimensional space, so to sum up: Given a point
in 37-D, the function must decide upon a play
category.

smallest
under
over
greatest
smallest trump
trump just under
trump just over
greatest trump

| joker

f:5—

where S C R37

For this we were inspired by fuzzy logic mem-
bership functions. Instead of mapping each
input variable to a different set of membership
“tops”, we chose to map all 37 dimensions in
our input to a set of membership functions, or
“Strategy Tops”. Our representation is thus a
set of Strategy Tops, each with its own play
category, height, slope and placement in 37-D
state space. If a given situation, as represented
by a point p; in state space, is close to a Strat-
egy Top T'(category c, height h, slope s, point
p2), the probability of category ¢ will be

P(c) = h — dist(p1, p2) * s

where dist(p1,p2) is in essence the Euclidean
distance

37

Z(pli - in)Q

i=1

but modified by a normalization
dimsize; = upperbound; — lowerbound;

and a stretch factor since values are restricted
to an interval in each dimension, and the inter-
vals have unequal size among the dimensions.
For instance, some dimensions are “boolean”
i.e. range from no (0) to yes (1) while others
are card values which range from 0 to 14. The
idea is that a large stretch factor allows us to
assign less importance to strategy tops in the
given dimension by enlarging the distance be-
tween any two points in that dimension. Thus
a strategy may evolve different levels of impor-
tance for different dimensions.

57 stretchFactor; - (p1, — pzi)2

dist(p1,p2) = Z

, dimsize;
=1

The probabilities for each of the 9 play cat-
egories are given by the tallest top of that cat-
egory at p1, and the numbers given for all cat-
egories are normalized before use. So the out-
put of a “lookup” in the decision space during
play is a 9-tuple of probabilities which add up
to 1.

The actual decision is a probabilistic choice
among the categories, according to he proba-
bility found for each play category. This pre-
serves some non-determinism, which we felt
was necessary. Ligeud is not a game of perfect
information like chess or checkers — a player
cannot always know what the other players
are holding. Thus, it is not possible to always
judge exactly which card is the best to play,
and a completely predictable player would prob-
ably also be easier for a human opponent to
beat.

Bidding

Bidding proved to be harder to evolve, perhaps
because an important aspect of it is gambling.

We took the same approach as to playing,
choosing a set of decision categories for bidding
just as we did for playing: pass, nole, low, high,
low clubs, and high clubs. E.g. bidding “low”
would choose the lowest non-clubs bid that is
higher than the last bid (since you must raise
the bid of the last player, or pass).
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The dimensions chosen can be found in ap-
pendix 1.2.

2.2 Arithmetic tree functions

The multidimensional sets of StrategyTops soon
showed a preference for very large sets, tak-

ing several megabytes of disk space to describe

a single strategy, and slowing the overall pro-

cess of evolving strategies using the EA. Also,

the computation time needed by the Multi-

Dim strategies when playing against a human

player were unsatisfactory on slow hardware.

The introduction of arithmetic tree strategies

were an attempt to speed things up.

Playing and bidding

Playing and bidding each has its own tree com-
posed of nodes and leaves. A node is a com-
mon arithmetic operator: plus, minus, times,
division, modulo, power, square root, sin, cos,
absolute value, min, max, exp or log, and a
leaf is either a constant or a variable v; where
ie{l,2,...,37}.

Given a point in state space, the tree com-
putes a function value which will serve as the
one variable mapped to the fuzzy membership
functions. For the arithmetic trees, we con-
fined the number of membership tops to one
per category. Just as for the MultiDim strate-
gies, the output is the set of probabilities for
all the categories described. The tree strat-
egy contained one tree for playing and one for
bidding.

3 EA technicalities

3.1 Crossover

Since we had two different strategy representa-
tions, there is both a multidimensional and an
arithmetic tree crossover. Of course they are
only applied if a uniformly distributed random
number is less than the crossover rate.

Multidimensional Crossover

We form the offspring of two multidimensional
strategies by first choosing randomly a number
between 20 to 80 to represent the percentage
of strategy tops that should be copied from

the first parent into the offspring. Then for
the second parent choose a number between
20 and 80 denoting the percentage of strategy
tops that will be copied to the offspring. The
offspring can therefore contain either more or
less strategy tops than its parents.

Arithmetic Tree Crossover

An arithmetic tree strategy consists of two trees
and a decision top for each possible decision
(9 for playing and 6 for bidding). Each top
is specified by three floating point values: a
place, a height and a slope. The crossover of
the decision tops of two arithmetic tree strate-
gies is simply the decision tops produced by
taking the average of the floating point values
of the parents’ tops.

The two parent arithmetic trees are then
crossed by either taking the sum of the two
parents and dividing by two (see figure 1) or
by choosing a random subtree from the first
parent and inserting it randomly in the second.

Figure 1: An offspring is formed by the average
of the two parents

3.2 Mutation

As was the case with crossover we have two
different mutation operators. Each is of course
applied according to the mutation rate speci-
fied in the EA.
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Multidimensional mutation

The representation of a multidimensional strat-
egy contains strategy tops. Each is specified
by 39 floating point values: a place in R37,
a height and a slope. Each of these floating
point values is mutated by adding a Gaussian
distributed random variable. Of course if it is
one of the coordinate values, the value has to
stay within the bounds of the corresponding
dimension. So if the value exceeds the bounds
it is rounded up or down accordingly. By mu-
tating all the floating points in the strategy, we
are then done because now we have a strategy
with different tops in R37.

Arithmetic tree mutation

The decision tops of the arithmetic strategies
are mutated as follows: First a random num-
ber (a Gaussian distributed value with mean 0
and standard deviation 1) is decided on. Then
different constants for each of the three kinds
of attributes of a decision top (place, height
and slope) are multiplied to the random num-
ber. This is done to ensure a not too drastic
mutation that preserves the feasibilty of the
decision top. The result is then added to each
individual floating point value specifying the
top if the mutation rate tells us to.

The playing tree and bidding tree are each
mutated by either swapping two randomly cho-
sen subtrees or replacing a leaf with a new
randomly generated subtree. The latter could
cause the trees to grow rather explosively, so
we definded a maximum size of the trees.

3.3 Selection

Given the complex nature of our strategy repe-
sentation as described in section 2, it is ob-
viously hard to decide at a glance whether a
strategy is good or not, much less compute a
value to express the quality of a strategy; a
simple and absolute fitness value is not read-
ily available. Since we are dealing® with a card
game, the natural method for selection seemed
to be 4-way tournament selection. We pick
four random strategies from the current gen-
eration and let them play against each other
a number of times. The strategy of the most

®No pun intended.

successful player (i.e. who has made the most
money) is then copied to the next generation.

In card playing there is quite a bit of luck
involved e.g. in the order of the cards after
a shuffle. To take this randomness out of the
equation it is important that each of the tour-
naments consist of many games, and certainly
at least four. This number of games allows
each of the players in turn to be the lead player
(the player who is the first to bid and play).
Similarly, to make sure that all players have
the role as lead player equally often, the num-
ber of games should be divisible by four.

Of course, the outcome of the tournament
depends somewhat on the relative positions of
the players. For instance a certain strategy
might be effective if its player is seated to the
right of a player with a very aggressively bid-
ding strategy. For this reason the players are
placed randomly around the table at the be-
ginning of each tournament.

Then, to make absolutely sure that the ab-
solute position of the players has no influence
on the outcome of the game, each tournament
is repeated four times. Between these repeti-
tions the players are rotated around the table.
At the end the results of all this is added up
and the winner is determined.

4 Modifications

The earliest experiments showed a disconcert-
ing lack of convergence towards anything. It
seemed that the MultiDim strategies were not
much better than a random player, and they
kept growing bigger and bigger. Also, in many
areas of the state space, they did not have
any StrategyTops and thus gave no answers
when asked for probabilities of the categories.
For these reasons, we introduced some counter-
measures that are explained in the following.

4.1 Increasing selection pressure

To raise the selection pressure and force strate-
gies to get better, we added a hardcoded strat-
egy as a player in each tournament. And we
added the rule that a tournament won by a
hardcoded strategy was invalid. As a result
the EA strategies were forced to beat a hard-
coded strategy to survive to the next gener-
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ation. The resulting strategies were visibly
better even after a few hundred generations.
Pushing the envelope, we then tried adding an-
other hardcoded strategy player to each tour-
nament. This did not result in any noticeable
improvement. On the contrary, the evolved
strategies now seemed more likely to play it
safe and pass during the bidding phase, be-
cause the two hardcoded players would raise
each other’s bids, thereby ensuring that no
hardcoded strategy got itself a really low bid
that was easy to meet. Passing too often dur-
ing bidding often allows the opponents to get
a low bid that is easy to win. When playing
against a human player, these strategies lost
badly, because they failed to ever win the bid.
We consequently returned to having only one
hardcoded player in each tournament.

4.2 Limiting strategy size

During the initial experiments, the best play-
ing MultiDim play strategy evolved had over
6000 strategy tops, taking 4.5 MBs to repre-
sent in a clear text file format. On average
performance hardware, it was too slow to play
against a fairly patient human player. To re-
duce the size of strategies, we introduced a
maximum number of StrategyTops, killing off
least used tops when the number increased be-
yond the maximum. In this way, we kept file
sizes down to approximately i MB per strat-
egy, or approximately 700 tops.

4.3 Greedy learning

Another attempt to improve strategies was to
use greedy learning when playing. After each
card played, the strategy was told whether it
was a good or a bad move, i.e. whether it
resulted in earning a trick for itself or its part-
ner or not. The StrategyTops were raised or
lowered accordingly, creating a new one when-
ever necessary. This caused an explosion in the
number of StrategyTops, emphasizing further
the need for a maximum number of tops. How-
ever sound the greedy learning idea may seem,
we have not been able to show that it had
any beneficial impact on the strategies evol-
ved. In fact we have conducted a couple of
experiments that demonstrates the failure of
greedy learning — see section 5.2.

4.4 Punishing the clueless

Because our MultiDim state space is so enor-
mous, strategies would sometimes find them-
selves at a point in the state space where there
was no strategy tops in sight. To make sure
this would not happen too often, we intro-
duced punishments for not giving a useful an-
swer (i.e when P(c) = 0% for all categories c).
The method was to subtract a small amount
from the strategy’s total winnings every time
it returned an all-zero answer. The net ef-
fect of this on the evolved strategies is hard
to estimate, but a visible side effect was that
the winnings were much lower for all strategies
in every generation, in fact often below 0 $.
This suggests that the strategies kept on hav-
ing “no-answer” areas in state space despite
the punishments, and we suspect that a really
good MultiDim strategy that never gives all-
zero answers must be much larger than we al-
lowed through the “maximum number of Strat-
egyTops” countermeasure. However, the latter
was a practical necessity in terms of comput-
ing speed and disk space requirements, for our
project to proceed at DAIMI.

4.5 Injecting fit genes

Because our strategy representation caused the
individual strategies to grow very large, our
evolutionary algorithm as a whole was quite
slow. So instead of starting from scratch every
time the algorithm was run, we made it pos-
sible to “inject” better genetic material in the
starting generation. This had two advantages:
The injected strategy could continue its evo-
lution and hopefully improve further, and the
fierce competition would motivate the infant
strategies to reach a high fitness level quicker
than before.

4.6 A human teacher

Equipped with the ability to inject fit individu-
als into the population one may ask “So, what
individuals should we inject?”. Of course it
could be a strategy that resulted from a previ-
ous EA run, but there is another option. You
could train it yourself. In the Ligeud GUI it
is possible to enter the tutor mode, in which
every decision made by the human player is
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recorded and used to train a multidimensional
strategy. This strategy can then be injected
into the population or played against immedi-
ately.

The tutor mode features do work, but can
probably not be used in practice to create a
full-fledged strategy from scratch. The vast
number of different playing situations in a game
calls for an equally vast number of recorded de-
cisions before the strategy is able to play with-
out being embarrasingly inadequate. This re-
quires an extremely patient teacher with noth-
ing better to do than play Ligeud for a month
or two.

5 Experiments

5.1 Different setups

Throughout all of our experiments we have
used a variety of different experimental setups
in an attempt to get the best results as quickly
as possible.

To co-evolve or not to co-evolve

One of the thoughts behind the introduction
of the arithmetic tree strategies was to try an
approach inspired by co-evolution. This meant
having two subpopulations: one consisting of
multidimensional strategies and one consisting
of arithmetic tree strategies. In each tourna-
ment the different kinds of strategies would
then fight it out, and hopefully this additional
diversity in the competition would lead to bet-
ter strategies.

Unfortunately these experiments were in
general not as successful as their counterpart:
the completely separate subpopulations. It was
almost always the case that at a given time ev-
ery member of one subpopulation were more
successful than all members of the other sub-
population. So the expected synergy effect re-
mained unseen.

Testing specific attributes

Many times during our experiments we have
had to test one specific attribute of a strat-
egy. For instance, the ability of a multidimen-
sional strategy to make good playing decisions

without learning during play or using punish-
ments. To target such attributes precisely we
have made it easy (for us) to specify when to
use hardcoded decisions and when to use those
of the evolved strategy. So in the example just
mentioned, we would create an all-multidim
population, set punishments to 0, switch off
the greedy learning, and make the players use
hardcoded bidding.

The performance of “partial” strategies ob-
tained this way have overall been consistent
with the performance of the combined com-
bined effect. For example, a multidim strat-
egy with well evolved bidding ability and hard-
coded card playing and another multidim strat-
egy with hardcoded bidding and well evolved
card playing can be cut-&-pasted into a player
that is just as good as (and often better than)
a multidim player who has evolved bidding and
playing simultaneously.

Manual testing

At the end of the day, the evolved strategies
are meant to be played against via the Ligeud
GUI So after a suitable number of generations
of evolution the final test of the quality of a
strategy ensues in the GUI. The quality mea-
sure applied here is of course the impression of
its skills that a well versed human player gets
when playing against it.

5.2 Testing greedy learning

We conducted two experiments to show the
impact (or lack thereof) of the greedy learning
explained in section 4.3. First we run a normal
MultiDim evolution for 300 generations (popu-
lation size 25, mutation rate 0.8, crossover rate
0.8) with greedy learning switched off. Then
we run the exact same evolution with greedy
learning switched on. The quality measure
used is a Bezier smoothed count of the number
of hardcoded wins. The discouraging results
can be seen in figure 2 in appendix 2.1. Notice
that the greedy learners

show no sign of having an advantage over
the other players.

In the second experiment we let a hard-
coded player, a player making completely ran-
dom choices at all times and two completely
“empty” MultiDim players compete for 3000
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tournaments, each with four games. In the
beginning, the “empty” players have no strat-
egy tops at all, but they are willing to learn.
That is, the only way they can get new strat-
egy tops is by greedy learning. During the run
we keep track of the number of games won by
each player. The results are depicted in fig-
ure 3 in appendix 2.1. Notice that the learn-
ers perform no better than the utterly random
player.

5.3 Tuning EA parameters
Purpose and setup

To determine the optimal settings for the mu-
tation and crossover rate we conducted sys-
tematic experiments. The resulting graphs can
be found in appendix 2.1. What we needed
to run these experiments was a good quality
measure on an entire generation, so that we
could measure the effect of specific mutation
and crossover rates after a fixed number of gen-
erations. But because no absolute fitness mea-
sure for an individual exists it is not possible to
just use the average fitness of the generation as
the quality measure. Instead we set up the ex-
periment with one hardcoded strategy in each
tournament (as described in section 4.1). The
quality measure was then the number of times
the hardcoded strategy won a tournament —
averaged over the number of tournaments held.
The idea being that if an entire generation is
of high quality, its members should be able to
beat the hardcoded strategy more frequently.

Of course this does not ensure that EA gen-
erations with good (low) scores will be able
to play well against any opponent. However,
the hardcoded strategy is actually half-decent,
so the quality measure is good enough for our
purposes.

The experiments were run on a population
of 30 individuals for 100 generations without
the punishment of section 4.4 which could dis-
tort the results. First the bidding and playing
abilities of multidimensional strategies were tes-
ted in separate runs, then the same was done
for arithmetic tree strategies. The result is an
average of 5 counts of hardcoded wins.

Results

The results of evolving the playing ability of
multidimensional strategies are depicted in fig-
ure 4 in appendix 2.2. It is readily apparent
that the best results are obtained by keeping a
high mutation rate. This could be due to the
immensity of our state space. So for quite a
number of generations it probably pays off for
strategies to explore the state space as much as
they can. A high mutation helps achieve this.
For the crossover rate the picture is quite mud-
dled, but the lowest (i.e. best) value is at the
high end of the scale. However, with only this
5 by 5 grid® to judge from, it is hard to draw
any solid conclusions.

The results of evolving the playing ability
of arithmetic tree strategies can be found in
figure 5 in appendix 2.2. Also in this case the
best values are achieved by a high mutation
rate, probably for the same reason as above.
Here it is quite clear that crossover rates in
the area of 0.7 are superior when combined
with the right mutation. This all seems quite
reasonable.

What may seem less reasonable is the cor-
responding graphs for the bidding phase. They
can be found in appendix 2.3. It appears that
in both figure 6 and 7 the mutation rate does
not matter much compared to the crossover
rate, except in the extreme cases (corners of
the graph). The crossover rate on the other
hand really makes a difference. Both graphs
have significantly lower (better) points when
the crossover rate is low.

This may be an indication that our crossover
operator is perhaps too drastic or needs some
kind of improvement. Alternatively the phe-
nomenon might be an inevitable consequence
of the way we measure. A low crossover rate
means that a higher percentage of a generation
is winners of tournaments.
of a tournament you must beat a hardcoded
strategy. So you get the best short term re-
sults (because our EA is extremely time con-
suming we measure after only 100 generations)
by just having a population of strategies that
have won a lot of tournaments. Why the bid-
ding phase is more sensitive to this than the

To be a winner

5Which, sorry to say, took 5 powerful PCs more
than 36 hours to produce.
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playing phase is not clear.

5.4 Evolving strategies

As mentioned, the Multidim strategies fared
better than the ArithTrees when used in the
EA context. The trees never really improved
visibly on the number of hardcoded wins. Fig-
ure 8 shows the number of hardcoded wins
in a 1000-generation run of the EA with a
pure Multidim population. The population
started from randomly generated individuals
and played 4 times 4 games in each tourna-
ment. Figure 9 shows a corresponding graph
for a run with a pure ArithTree population.
This population had some previously evolved
trees (the best from several previous runs) in-
jected in the first generation and played 8 times
4 games in each tournament. This double up in
games per tournament in relation to the mul-
tidim experiment accounts for the difference in
the number of hardcoded wins: approximately
200 for multidim and 400 for trees in the be-
ginning of each run.

The two graphs show, however, a signifi-
cant improvement over the generations in the
multidim case whereas the trees do not seem
to improve at all. This difference we believe re-
flects not only the differences in experimental
setup, but a true difference in strength of the
evolved multidims and arithmetic trees. Our
belief is supported by the general impression
left when loading and playing against the in-
dividuals from these and from other runs, but
also by the following comparison experiment.

5.5 Comparing performance

To get an idea of how the overall performance
of strategies is, we tested four strategies of dif-
ferent kinds against each other over 3000 tour-
naments each consisting of four games. There
was thus no evolution or learning involved. The
chosen strategies were:

e the hardcoded strategy,

e the oldest strategy from generation 850

of the multidim evolutionary run described

in section 5.4,

e the oldest Arithtree of generation 900 of
the tree evolution described above, and

e a strategy playing at random

Both the multidim run and the arithmetic
tree run described in section 9 evolved both
playing and bidding strategies simultaneously,
but in the following comparison experiment,
bidding was set to hardcoded, because the evol-
ved bidding strategies were just too awful to
allow them to win anything.

The play strategies’ percentages of total
wins converge towards levels of 54%, 23%, 12%,
and 8% respectively 7. The hardcoded strat-
egy still by far outperforms the evolved in-
dividuals, even when they adopt hardcoded
bidding. Interestingly, though, the multidim
shows some respectable playing compared to
the tree, which given time only just manages
to distance itself from the completely random
strategy.

6 Conclusion

The goal of evolving a computer player for
Ligeud has been achieved, albeit not a very
competent player. The two representations of
strategies, multidimensional fuzzy logic mem-
bership functions and fuzzy arithmetic tree func-
tions, showed a noticeable difference in perfor-
mance after evolving in the EA.

This points to problems with the EA oper-
ators of crossover and mutation for our arith-
metic trees, which is perhaps not surprising. A
function built from arithmetic operators as de-
scribed may be changed drastically by only a
simple crossover or mutation operation, lead-
ing to the erratic changes in quality and lack
of convergence seen for our trees.

The multidimensional strategies in turn re-
sponded better to the manipulations of evolu-
tion and actually improved over a number of
generations. Still, a simple hardcoded strat-
egy by far outperforms the multidims both in
games won and in computing speed. The lat-
ter is the subject of possible optimizations.

6.1 Future work

Because of the slow pace of our EA, we first
and foremost need to conduct more tests, more

"which sums to 97% due to a minor integer round
down error
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experiments, more tinkering with parameters
and settings if we want to evolve a really ca-
pable Ligeud player.

Minor adjustments

There are some minor adjustments that we did
not have time to try in our experiments. One
is adjusting the mutation rate during a run
according to a diversity measurement on the
population, so that low diversity would im-
ply high mutation and vice versa. The need
for this is also suggested by our mutation and
crossover tuning - lots of mutation is necessary
in the beginning, but we expect that this may
not be the case later on. We have implemented
a diversity measure based on the average dis-
tance between all the tops of all the players in
a population, but without test results we can-
not know whether this is an adequate measure
or not.

Another minor adjustment could be done
on the multidimensional crossover operator: in-
stead of selecting the tops to copy to the off-
spring randomly, the most frequently used tops
could be chosen. This would hopefully im-
prove the quality of the offspring so that the
crossover operation could repair its

Trimming the tops

One unsolved problem in the multidimensional

representation is that strategy tops can be strongly

overlapping or even contained in one another.
This could be remedied by merging tops that
are within some fixed proximity range of each
other. This would also help keep the number
of strategy tops down.

Rethinking representation

Finally and most drastically, to improve the
overall performance of our EA it would be a
good idea to try to find a lighter version of the
current multidimensional strategy while sus-
taining (or even improving) the current results.

One idea for an alternative representation
could be one along the following lines: Instead
of an arbitrary number of strategy tops placed
in R37, a fixed number of tops could be placed
in R for each dimension. The value of each di-
mension would then map directly to one fuzzy

membership function deciding between the 9
(or 6 for bidding) play categories. In this man-
ner each dimension would opt for a decision
category. These 37 decision categories should
then of course be narrowed down to one. This
could be done by chosing the most popular
category or otherwise. This representation is
most certainly lighter than the current multi-
dimensional one, but also obviously not able
to express as diverse and powerful strategies.
If the results of using such a representation
were good, maybe the game of Ligeud does
not require the complex strategies that we sus-
pected.

Also, the bidding strategies never evolved
a really good individual. An entirely differ-
ent approach such as neural nets could perhaps
give a better result.
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1 Dimensions of the state space
1.1 Dimensions in the playing phase

Dimension number Dimension name Dimension range

1 The number of cards left on my hand 0-12

2 The number of clubs left on my hand 0-12

3 The number of hearts left on my hand 0-12

4 The number of spades left on my hand 0-12

5 The number of diamonds left on my hand 0-12

6 Face value of my overall best card 0-50 (50 is joker)

7 Face value of my best clubs card 0-14

8 Face value of my best hearts card 0-14

9 Face value of my best spades card 0-14

10 Face value of my best diamonds card 0-14

11 Average face value of all my cards 0-21

12 Average face value of clubs 0-14

13 Average face value of hearts 0-14

14 Average face value of spades 0-14

15 Average face value of diamonds 0-14

16 Number of cards played in this round 0-3

17 Bid winner myself-right player

18 Trump none-clubs

19 My partner myself-right player

20 Left player is surely renonce in clubs no-yes

21 Left player is surely renonce in hearts no-yes

22 Left player is surely renonce in spades no-yes

23 Left player is surely renonce in diamonds no-yes

24 The player across is surely renonce in clubs no-yes

25 The player across is surely renonce in hearts no-yes

26 The player across is surely renonce in spades no-yes

27 The player across is surely renonce in diamonds no-yes

28 Right player is surely renonce in clubs no-yes

29 Right player is surely renonce in hearts no-yes

30 Right player is surely renonce in spades no-yes

31 Right player is surely renonce in diamonds no-yes

32 The suit of the left card on the table none-clubs

33 The face value of the left card on the table none-clubs

34 The suit of the card across on the table none-clubs

35 The face value of the card across on the table none-clubs

36 The suit of the right card on the table none-clubs

37 The face value of the right card on the table none-clubs

Table 1: Dimensions of the play phase.
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1.2 Dimensions in the bidding phase

Dimension number

Dimension name

Dimension range

0O UL W -

= = e e e e e = ©
CO O UL i Wi~ O

My number of clubs

My number of hearts

My number of spades

My number of diamonds

Face value of my overall best card
Face value of my best clubs card
Face value of my best hearts card
Face value of my best spades card
Face value of my best diamonds card
Average face value of all my cards
Average face value of clubs
Average face value of hearts
Average face value of spades
Average face value of diamonds
Last bid of the left player

Last bid of the player across

Last bid of the right player

My last bid

0-12

0-12

0-12

0-12

0-50 (50 is joker)
0-14

0-14

0-14

0-14

0-21

0-14

0-14

0-14

0-14
nothing-ligeud (ligeud is 12 tricks)
nothing-ligeud
nothing-ligeud
nothing-ligeud

Table 2: Dimensions of the bid phase.
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2 Experimental results

2.1 Greedy learning
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Figure 2: Evolving Multidims with and without learning
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Figure 3: Percentage of total wins for learning multidim strategies against hardcoded and random
strategies
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2.2 Playing strategies

Average number of hardcoded wins (less is better) —+——

Mutation rate

Figure 4: MultiDim.: Systematic tuning of the EA parameters for playing.

Average number of hardcoded wins (less is better) —+—

Mutation rate

Figure 5: Arith.Tree: Systematic tuning of the EA parameters for playing.
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2.3 Bidding Strategies

Average number of hardcoded wins (less is better) —+——

Figure 6: MultiDim.: Systematic tuning of the EA parameters for bidding.

Average number of hardcoded wins (less is better) —+——

O =~ N W RO ~®

D1

Figure 7: Arith.Tree: Systematic tuning of the EA parameters for bidding.
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2.4 Evolving play and bid strategies
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Figure 8: Hardcoded wins against evolving multidim strategies
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Figure 9: Hardcoded wins against evolving ArithTree strategies
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2.5 Comparing performance
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Figure 10: Percentage of total wins for 3000 tournaments, each consisting of 16 games
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BREC Project 3

Martin I. Jensen and Thomas Rasmussen

Abstract— This paper is part of a BREC-
project [3] for which the objective is to in-
vestigate basic issues in evolutionary algo-
rithms [4, 5]. The general description of an
EA leaves a lot of room for creating offspring
in many different ways. The goal of this pa-
per is to look closer at the way offspring are
created and to see if there are one or more
methods or guideline that may outperform
other methods or guideline. We will look at
four kinds of methods to create offspring.

1 Introduction

The way in which offspring are created [4, 5]
may have a profound impact on the perfor-
mance of the EA, where performance means
quality of the results of the algorithm. We
will try out four different approaches to off-
spring creation and systematically test these
approaches in an EA. The first two variants are
very similar. The first one picks two parents at
random and makes one child, using crossover
[4, 5]. The second picks a parent at random for
each parent in the population and makes one
child using crossover. Both of these algorithms
then mutates and make a selection on the pop-
ulation [4, 5]. The third variant does the same
as the second, except that is also mutates the
child. It then makes a selection on the popu-
lation. The fourth variant is different from the
other three. Offspring in this variant replaces
the parent if it has better fitness. This is done
for both mutation and crossover, and no se-
lection is done. Using the BREC-Framework
[3] we implemented, ran and tested the above
mentioned variants of offspring creation.

2 Variants

The following is a thorough description of the
four variants of offspring creation that we ex-
perimented with in this project. The four vari-
ants of offspring creation all used an arithmetic
crossover operator as described in the litera-
ture [4, 5].

2.1 Variant 1

This algorithm runs through all the parents
and makes a probabilistic test on the crossover
parameter. If the test succeeds the crossover is
done and during this crossover operation, the
algorithm picks two parents at random from
the whole population and then makes a sin-
gle child by crossing the two parents and puts
this child in the new population. If the prob-
abilistic test fails the algorithm simply copies
the current individual to the new population.
All the children go through mutation and se-
lection. Normal distributed mutation to the
whole genome is done, if a probabilistic test
on the mutation parameter succeeds for each
individual. After the mutation phase, the new
population goes through a standard tourna-
ment selection. The pseudo code for the algo-
rithm follows:

Initialize and evaluate population
while( not done ) {
Find elite individual

newpop = population
for (i=0; i<popsize; i++)
if ( random() < crossover) {
Pick two random individuals I and J.
newpop[i] = Crossover( I, J )
}
else {
newpop[i] = population[i]
}
}

population = newpop;

Mutations is done on
the population.

Select next generation
with tournament selection.

Insert elite individual if
it was lost in selection.

}
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2.2 Variant 2

This algorithm runs through all the parents
and makes a probabilistic test on the crossover
parameter. If the test succeeds a crossover
operation is done. During crossover the al-
gorithm picks one parent at random from the
whole parent population and then makes a sin-
gle child by a crossover of the current parent
and the randomly picked parent. And puts
this newly created child in the new population.
If the probabilistic test fails the algorithm sim-
ply copies the current individual to the new
population. All the children go through muta-
tion and selection. Normal distributed muta-
tion to the whole genome is done, if a proba-
bilistic test on the mutation parameter suc-
ceeds for each individual. After the muta-
tion phase, the new population goes through
a standard tournament selection. The pseudo
code for the algorithm follows:

Initialize and evaluate population
while( not done ) {
Find elite individual

newpop = population
for (i=0; i<popsize; i++)
if ( random() < crossover_rate ) {
Pick two random individuals I
newpopl[i] =
Crossover( I, population[i] )
}
else {
newpop[i] = population[i]
}
}

population = newpop;

Mutations is done on
the population.

Select next generation
with tournament selection.

Insert elite individual if
it was lost in selection.

2.3 Variant 3

This algorithm runs through all the parents
and makes a probabilistic test on the crossover
parameter. If the test succeeds a crossover and
mutation operation is done. The algorithm
makes a crossover the same way as Variant
2. The new child is mutated with normal dis-
tributed mutation on the genome and put in
the new population. That is no probabilistic
test is done on the mutation parameter. If the
probabilistic test on the crossover parameter
fails no crossover or mutation is done and the
current parent is copied to the new population.
The new population then goes through a stan-
dard tournament selection. The pseudo code
for the algorithm follows:

Initialize and evaluate population
while( not done ) {
Find elite individual

newpop = population
for (i=0; i<popsize; i++) {
if ( random()< crossover_rate ) {
Pick one random individual T.
newpop[i] =
Crossover( I, population[i] )
Mutate newpop[i]
}
else {
newpop[i] = population[i]
}
}

population = newpop;

Select next generation
with tournament selection.

Insert elite individual if
it was lost in selection.

}

2.4 Variant 4

This algorithm runs through all the parents
while doing the following. A copy of the cur-
rent parent is made and this new individual
is mutated on its genome with a normal dis-
tributed mutation operator. If the new indi-
vidual has better fitness than the current par-
ent, then the current parent is replaced. Af-
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ter the mutation face the algorithm then runs
through the new population and picks two par-
ents at random. From the two parents it makes
a new individual by a crossover of the two ran-
dom picked. If the newly created individual is
better than the worst of the two current in-
dividuals, the worst is replaced. No selection
is done. The pseudo code for the algorithm
follows:

Initialize and evaluate population
while( not done ) {
Find elite individual

newpop = population
for (i=0; i<popsize; i++) {
indv = Mutate newpopl[il

if indv better than newpop[i]
newpopl[i] = indv

for (i=0; i<popsize; i++) {
Pick two random numbers il, i2
indv = Crossover( newpopl[il],
newpop[i2] )

idnv replaces the worst parent
if it is better

}

Insert elite individual if
it was lost in selection.

}

3 Experiments

3.1 Settings and output

We used the following parameters for all the
variants:

e population size = 100

e crossover operator : Arithmetic crossover,
where the child is created in the convex
hull defined by the parents.

e crossover probability = 0.9

e mutation operator : Normal distributed
mutation, with variable variance 1/(1+t).
(t is the generation number)

e mutation probability = 0.75

e genome representation : floating point

vectors

e clitism was used

3.2 Test functions

We used the follow seven test functions:
Ackley F1 20D (min):

-0 Q.qL 20 .2
f(x) =20+e—20e " 20 =17
P
—62170 ?glcos(Qﬂmi)

De Jong F4 (min):

30
fx) =) af
=1

Griewank F1 20D (min):

1 20

f(x) = 1000 2 (z; — 100)?

20
x; — 100
f”cosiJrl
i=1 ( Vi )

Rastrigin F1 20D (min):

20
f(x) =100+ Zazf —10 - cos(27 - x;)
i=1
Rosenbrock F1 20D
20
F6) =37 (1000 — 2 1) + (i1 — 1)%)
i=2

Schaffer F6 (min):

sin?(\/z2 + y?)
(14 0.001(z2 + y?))?
Ursem multimodal F8 20D (max):

fry) =05+

20 20
f(x) =2 cos(2m - Hm) —4. (Z(mi +1)?)
21021 i=1
+(2/n) ) (cos(2m - a;))
=1

All but Schaffer, which were run with 50000
evaluations, the rest were run with 200000 eval-
uations. All variants were run 50 times and

data was collected during each run with the
BREC-Framework.
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3.3 Results Avg + SD
. . Variant 1 | 1.4192E-02+1.3032E-02
Results obtained from experiments. Average Variant 2 | 1.3804E-02+1.3307E-02
best fitness of 50 runs ?Lt.th.e end of each the Variant 3 | 1.5507E-0212.2212F-02
runs. SD = Standard diviation. Variant 4 | 6.0858E-09£4.4233E-09
Avg £ SD
Variant 1 | 4.305041.4441 Table 6: Schaffer F6
Variant 2 | 3.796741.3308
Variant 3 | 4.00854+1.1213 Avg + SD
Variant 4 | 3.159341.0897 Variant 1 | 2.2620+2.2421E-03
Variant 2 | 2.2623+6.4699E-08
Table 1: Ackley F1 20D Variant 3 | 2.2608+1.1017E-02
Variant 4 | 2.26234+7.3365E-07
Avg £ SD .
Variant 1 | 7.2515E-09=7.0844E-17 Table 7: Ursem Multimodal 8 20D
Variant 2 | 8.1832E-16+3.6358E-17
Variant 3 | 1.0971E-094+1.0692E-17 3.4 Graphs
Variant 4 | 3.4769E-13+1.6375E-14

Table 2: De Jong F4

Avg £ SD

Variant 1

0.0633+0.1412

Variant 2

0.0470+0.1681

Variant 3

0.0613+0.2113

Variant 4

0.0177£0.0213

Table 3: Griewank F1 20D

Avg + SD

Variant 1

8.4572+2.7433

Variant 2

8.4174£3.0959

Variant 3

7.8005+2.6004

Variant 4

8.49714+3.7348

Table 4: Rastrigin F1 20D

Table 5: Rosenbrock F1 20D

Recording the average best fitness, where the
number of evaluations mod 1000 equals 0, made
the first set of graphs. The reason for this was
the noisiness of the graphs when using all eval-
uations. The graphs can be found in figure 1-7.

L L L
0 50000 100000 150000 200000
Evaluations

Figure 1: Ackley F1 20D

Avg £ SD
Variant 1 | 45.2995+80.0230 For the second set of graphs the average
Vit St pttistag0 | et s el ey et
Variant 3 | 112.59464319.4000 by thge population size (100). This muli)ipli—
Variant 4 | 27.1350+£27.6800 ]

cation makes these graphs similar to the other
graphs. The reason for making these graphs
was that they were less noisy than the others.
The graphs can be found in figure 8-14.
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Figure 4: Rastrigin F1 20D

3.5 Conclusion

It is clear to see that Variant 4 is by far better
than the other three variants. It finds the best
optimum value in four out of the seven tests.
And the second best optimum value two times.
Most of the time, Variant 4 converge to a near
optimum solution faster than the other and
the solution in most of the cases is also better
than the others. Variant 2 comes out of the
tests with nice results as well. It has better
results than Variant 1 and 3, but not as good

200
Variant 1
Variant 2 -------
Variant 3 -

150

100

Fitness

L L
0 50000 100000 150000 200000

Evaluations

Figure 5: Rosenbrock F1 20D
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Figure 7: Ursem Multimodal 8 20D

as Variant 4.

4 Discussion

The results of our experiments with different
variants show that Variant 4 can make better
results when it comes to real numerical opti-
mization problems. The reason for this may be
that the only offsprings that survives are those
with better fitness. This is not the case for
the other three variants, where offspring with



Topics of Evolutionary Computation 2001 69

EVALife, Dept. of Computer Science, University of Aarhus

j j " Variant1
Variant 2 -------
Variant 3 -
Variant 4
o
8
2 35 g
i
st 1
25 g
2 . . .
0 50000 100000 150000 200000
Evaluations
5e-06
Variant 1
1 Variant 2 -------
4.5€-06 ' Variant 3 - |
i Variant 4
2e-06 | E
35e-06 1
3e-06 g
2 2506 - g
o !
2e-06 \ 4
1.5e-06 |- i 4
1e-06 - q
507 |- 4
0 S L L e L
0 50000 100000 150000 200000
Evaluations
025 T T T
Variant 1
Variant 2 -------
Variant 3 -
Variant 4
02 Y 1
015 | g
8
£
i \
01t . 4
005 F o E
0 . . .
0 50000 100000 150000 200000

Evaluations

Figure 10: Griewank F1 20D

worse fitness can survive several generations.
Another reason for Variant 4’s better perfor-
mance, may be that there is no selection done
on the population level. The selection is done
if a mutation or a crossover is better than the
parent. This means that in theory it is possi-
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Figure 13: Schaffer F6

ble for the population to contain several near
optimal solutions, but with genomes far apart
from each other, in the genome-space. This
is some form of island-based algorithm [5],
where each individual constitutes an island,
and migrations are done by the mutation- and
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Crossover-operators.
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Optimizing Bus Schedules for Aarhus Sporveje

Sabrina Nielsen and Thomas Lindgaard

Abstract— This report describes our at-

temps to minimize waiting times for the busses

run by Aarhus Sporveje through use of an
EA. It contains our model, the ideas used
in the EA and our experiments. It also dis-
cusses problems and considerations encoun-
tered during the project.

1 Introduction

The purpose of our project has been to mini-
mize the time you need to wait when changing
from one of the busses run by Aarhus Sporveje
to another, In other words we wanted to mini-
mize the waiting time just by shifting the sched-
uled departure times of the routes while keep-
ing the current routes and the current interval
between departures and thereby making the
schedules for the different routes ”fit together
more nicely”.
We had two main objectives in mind:

e To apply EAs to a real world prob-
lem
We thought it would be a reasonable chal-
lenge to model a problem from the real
world and examine which problems such
a model would imply and whether we
could construct an EA that could face
up to those problems. The reason why
we chose to experiment with minimiz-
ing waiting times was that it is an in-
tance of a very common problem, namely
scheduling.

e To experiment with fitness vectors
versus fitness values
Similarly, we felt it could be an interest-
ing strategy to let the individual genes in
the genome have their own fitness such
that an individual would be equipped with
a fitness vector rather than a single fit-
ness value. The idea was then to make
the crossover dependent on the genes in-
dividually. The risk in this approach is
the possibility of two genes counteract-
ing each other.

1.1 Outline of the idea

The idea for the project was first of all to make
a reasonable model of the bus routes and their
stops. Secondly, we wanted to create an EA
that used individuals consisting of a genome
with a gene for each route and contained both
a corresponding fitness vector and a scalar fit-
ness value. Lastly, there remained the task of
acquirering the real world data from the bus
schedule.

Our experiments were mainly aimed at ex-
amining two things:

1. Whether or not the EA produced bet-
ter results when using the fitness vec-
tor rather than the fitness value — would
it benefit (significantly) from the extra
knowledge.

2. Whether EAs are at all suitable for solv-
ing the problem - when using our model,
at least.

2 Model

Obviously the real world is a rather complex
thing to deal with. Hence, we have found it
necessary to work with a simplified model of it.
Our model only contains a subset of the actual
bus routes and stops due to the restrictions
described below.

For bus routes it is assumed that they al-
ways travel the same path and that they travel
back and forth between two stops (rather than
run around in circles). In the real world it is
not completely uncommon that the busses run
by Aarhus Sporveje have some subset of the
path divided into two so that only every other
bus passes that subset. There is also a single
circular route. In our data collection we have
pretended that busses always travel the same
path and we have ignored the one that travels
in circles.
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2.1 Routes

A bus route is equipped with an id, which is
the number that route is identified by in the
real world. It also holds an interval telling how
often that route runs (in minutes between de-
partures). The interval is static which excludes
the possibility of modelling the fact that most
busses in the real world run more rarely in the
evenings and on weekends. Finally it contains
a list of stops on that particular route and
how long it takes to travel from the first (or
last) stop on the route to any other stop on
the route — this information is of course nec-
essary to accurately decide where on the route
the bus is at a given point in time.

It is assumed that the bus passes a given
stop at the same time each hour. This implies
that the interval can be no more than 60 min-
utes, but when working with Aarhus Sporveje
this restriction is not particularly severe since
only one route exceeds this limit. We also keep
no information as to when the first and last
busses are scheduled — in our model the busses
run day and night.

2.2 Stops

The bus stops are somewhat simpler in that
they are identified by a unique id, a name and
information about the bus routes that pass
them.

A stop may represent more than one stop
from the real world since it represents ”both
sides of the road” — the stops for each direc-
tion are only represented as one stop in our
model. If there is a road cross the four di-
rections are incorporated into one stop. This
of course makes it possible to model the fact
that passengers often have to cross the road
between busses rather than just switching to
another bus travelling in the same direction
but following a different route up ahead.

2.3 Representation of time

As described previously all representatinos of
time in our model are done in minutes. We
have had several descussions whether or not
this choice resulted in too discrete a spectrum
and whether or not better schedules could be
achieved using a finer resolution. We have con-

outes
id
interval
+ Pointersto : Pofntersta
1 the Sops 0n ' therqutes !
' theroute  °. ' using'the
: R N, asop N
name
Stops
Figure 1: The relations between stops and
routes

cluded, however, that such a schedule would
not be applicable in the real world anyway.
Thus we have not persued this any further.

3 The EA

Our EA is implemented using the template on
page 13 in [4].

The individuals consist of a genome con-
taining a gene for each route and a starting
time for each of the route’s endpoints. If for
instance the route has an interval of 20 min-
utes, the starting time for the first endpoint
will be a number between 0 and 20, while the
starting time for the other end will be set to
the first starting time plus the travel time plus
0 to 10 minutes. This interval is added to
make room for more flexible schedules. The
two starting times are all that the algorithm
can move around. The individual also has a
fitness vector with an entry for each gene and
a scalar fitness value.

3.1 Fitness calculation

The most complicated aspect of our algorithm
is the evaluation of fitness. Here we had to
find a way to translate into a single number
the total amount of time that all the busses
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Figure 2: Schematic overview of an individual

would have to wait for all the other busses at
all the stops going in two different directions.

We also had to decide exactly how we wanted

the optimization to be: Should the average
waiting time be as small as possible or should
there be a stop somewhere on the route where
the waiting time for some bus was as small
as possible. What we chose was a combina-
tion of the two: We felt that it was reasonable
to expect that people planned their travels a
bit themselves. The optimal situation would
therefore be, that at a given stop — no matter
what route the passenger used to get there and
no matter what route (s)he wanted to switch
to — there would be an arrival of the first bus
where the waiting time for the departure of the
second bus was minimal.

Hence, for each gene (ie. each route) we
run through the stops it passes and for each
of these search for the departure the passen-
ger should choose, if (s)he planned to switch
to another in the set of busses using that stop.
In other words, if the passenger for instance
wanted to take route 1 (running 6 times an
hour) to stop A and here switch to route 2
(running only once an hour), it would be silly
not to get on the bus among the six running
every hour that would arrive just before route

2 visits stop A. Having calculated all the mini-
mal waiting times we take the average and use
this as the fitness for that particular gene.

It should be noted that we find it optimal
to arrive two minutes before the desired route
departs in order to have time to cross the road
or to leave room for heavy traffic. This de-
cision has no greater influence on our calcula-
tions in that we simply pretend that we arrived
two minutes later (which means that if we ar-
rived just one minute before the departure of
the other route we were too late in the eyes of
the EA).

3.2 Selection

The selection of the next generation is done
by tournament selection. Each individual is
compared to one other and the fittest one sur-
vives (hence the fittest individual will always
survive).

Since one of the objectives in our project
has been to experiment with fitness vectors
versus fitness values, we have implemented two
ways of comparing fitness of individuals: Com-
parison based directly on the vectors and com-
parison based on the average of the sum of the
vectors — a scalar value. Later it has turned
out that our way of comparing vectors does
not give a total order and we have had to rely
solely on the scalar values (see 6). This does
not destroy our experiments, though — we can
still use the vectors for crossover.

3.3 Mating

After half the population has been discarded
by the selection, the surviving individuals breed
to get the population up to full size. All in-
dividuals parent at least one new individual.
The new individual is created in one of two
ways depending on whether we use fitness vec-
tors or values:

e Fitness vectors
The starting times in each gene is created
from the parents’ genes by means of a
weighted average where the fittest gene
is weighted by the crossover rate and the
other by (1 - crossover rate).

e Fitness values
If we use fitness values the genes from the
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fittest parent is weighted by the crossover
rate.

3.4 Mutation

The way we decided to do the mutation is to
mutate the individual genes by adding a num-
ber between -1 and 1 to the starting times with
a probability defined by the mutation rate.
Since we only work with a smallest time unit
of one minute, the mutation can only move the
starting time of a route by minus one, zero or
one minute at a time. This seems a good strat-
egy for routes running several times an hour,
but it may not work as well for the routes run-
ning only once every hour — a minute may not
matter as much for second type of routes as
the first (see 7).

4 The experimental setup

As described previously, an essential part of
our project has been to experiment with fit-
ness vectors versus fitness values. Thus our
experiments have been performed twice: One
setup where crossover was made on the genes
individually and once where the crossover de-
pended solely on the overall fitness of the mat-
ing individuals.

For the evaluation of a run of the EA we
used the fitness value for both kinds of exper-
iments, since it must be expected that a good
run had a low fitness value even though the
crossover was based on the fitness vector with
the fitness value being the average of the en-
tries in the vector. Also this simplifies the job
of comparing the two kinds of runs.

First we examined how many generations
were nessecary for the population to converge
and how large the population should be. It
turned out that after 25 generations practically
all individuals had the same starting times even
with quite large populations. There seemed
not to be much difference in the final results
whether we had 25 or 250 individuals in the
population, so we decided to run our experi-
ments with 25 individuals for 25 generations.

The actual experiments were run with cross-
over rates ranging from 0.2 to 0.8 with an in-
terval of 0.1 and with mutation rates rang-
ing from 0.0005 to 0.0025 with an interval of

0.0005. Each combination was run 10 times
and an average calculated.

5 Results

The results we have obtained from this project
are not impressive. The two sets of experi-
ments are shown in tables 1 and 2.

5.1 Table 1: Fitness vectors

A Dbit to our surprise the results seem to be
completely independent of both crossover rate
and mutation rate — all runs simply seem to
give an average best waiting time of a little
less than five minutes. Our first suspicion was
that this was perhaps because the individual
genes counteracted each other and forced the
individuals to stay "bad” since there could be
a dependency between two genes such that if
one of them was good the other would auto-
matically be bad. This does not seem to be the
case, though, since we get more or less exactly
the same results when using the fitness value.

5.2 Table 2: Fitness values

After running this set of experiments we were
even more surprised. Not only are the results
completely independent of mutation rate and
crossover rate, there also seems to be no differ-
ence from the results produced by the previous
experiment.

Overall there really is no lesson to be learned
from the experiments regarding population size,
mutation and crossover rates or the use of vec-
tors or scalar values.

6 Problems defining ordering
on fitness vectors

During this project we have encountered vari-
ous problems.

The most serious was to find a suitable
comparison on fitness vectors that reflected that
we actually worked on vectors rather than sca-
lars. Our first choice was to say that the fittest
vector was the one with the greater number of
fit/smaller entries. It turned out however that
this ordering was not transitive. This caused
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severe problems for the algorithm since no in-
dividual could be said to be the fittest.

Anti-transitivity can illustrated by the fol-
lowing example:

A= {21 2 11 }
B = {13 25 14 11 }
c ={1 2 1 2 1; }

We see that using the proposed ordering we
get the following chain A > B > C > A, by
observing that A has one entry which is smaller
than the corresponding entry in B whereas B
has two entries which are smaller than the cor-
responding entries in A. Similarly for the other
combinations B-C' and C-A. Obviously this
chain constitutes a cycle and thus the order-
ing can not be transitive.

We found no reasonable solution except to
simply compare the fitness values that obvi-
ously reflect the quality of an individual, but
this solution does not really express the fact
that we deal with vectors rather than scalars.

7 Extensions

We have thought of a couple of extensions that
could me made to our project.

e Defining a way of weighting the stops
such that stops that are passed by many
busses or placed in central locations (pas-

senger intense locations) are weighted higher
than less frequented or more remote stops.

This could then be used to reward indi-
viduals that have low waiting times at
these stops which would be a good thing
since these stops probably host many bus
changes.

e Another way of improving the algorithm
with respect to getting results usable in
the real world is to supply the stops with
?preferred arrival times”. This should be
used to make sure that for instance stops
located next to schools are visited just
before eight o’clock rather than shortly
after.

e Furthermore several aspects of our model
could be extended to more realisticly mir-
ror the real world. For instance an en-
tire day or maybe even week could be

modelled rather than just one hour to
achieve more flexibility in the schedule.
Similarly a route that in reality has two
paths could be split into two routes with
each their path, but with the restriction
that they should have a specific interval
between them at stops visited by both of
them.

e A thing that could be done to improve
the actual algorithm would be to mutate
within a certain fraction of the interval
size rather than within static values |-
1:1].

8 Conclusion

We are slightly annoyed, to say the least, that
our experiments have supplied us with no in-
formation whatsoever to conclude on our idea
about supplying the individuals with a more
detailed fitness than just a scalar value. A
tempting conclusion would be that it makes
no difference and is thus superfluos. The lack
of change across mutation rates and crossover
rates, however, leads us to believe that our
model and the relations between routes and
stops are so complex that not even a vector
is sufficient to represent the quality of an in-
dividual — perhaps even more dimensions are
needed. ..or perhaps we have a hidden bug
somewhere.

We do not feel that the project has sup-
plied us with any information that justify us-
ing EA’s for the problem adressed. We are not
discouraged, though. We still believe there is
a possiblility that an EA could find an optimal
bus schedule if given enough information.

9 Source and executable

The source code and an executable can be found
in /users/u972035/job/evalife/Sporveje.zip.

The program is developed on a Windows
XP platform using Borland C++ Builder.

10 Contact

Sabrina Vestergaard Nielsen,
1u972247Qdaimi.au.dk
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Jo2 Jo3 Jo4 Jo5 |06 |07 |08 |

0.00050 || 4.6727 | 4.6806 | 4.6804 | 4.6495 | 4.6592 | 4.6427 | 4.6624

0.00100 || 4.6829 | 4.6599 | 4.6931 | 4.6704 | 4.6511 | 4.6494 | 4.6263

0.00150 || 4.6698 | 4.6664 | 4.6747 | 4.6614 | 4.6109 | 4.6631 | 4.6411

0.00200 || 4.6822 | 4.6761 | 4.6728 | 4.6580 | 4.6401 | 4.6466 | 4.6438

0.00250 || 4.6741 | 4.6675 | 4.6451 | 4.6615 | 4.6519 | 4.6535 | 4.6242

Table 1: Population size: 25, number of generations: 25, fitness vectors

| 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00050 || 4.6534 | 4.6576 | 4.6479 | 4.6663 | 4.6459 | 4.6807 | 4.6582

0.00100 || 4.6848 | 4.6466 | 4.6561 | 4.6563 | 4.6326 | 4.6661 | 4.6418

0.00150 || 4.6494 | 4.6681 | 4.6615 | 4.6668 | 4.6282 | 4.6811 | 4.6675

0.00200 || 4.6669 | 4.6458 | 4.6616 | 4.6325 | 4.6552 | 4.6777 | 4.6656

0.00250 || 4.6610 | 4.6581 | 4.6581 | 4.6550 | 4.6594 | 4.6596 | 4.6504

Table 2: Population size: 25, number of generations: 25, fitness values
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Pacman Evolver

Lasse Westh-Nielsen and Per Jefsen

Abstract— This document describes the
design of a genetic programming system, de-
signed to evolve pacman players. The mo-
tivation stems from an interest in evolving
something “stronger” than just solutions to
problems, in this case evolving agent be-

haviour in simple physical surroundings. From

this project we have found this to be possi-
ble indeed, since the system is able to evolve
quite good pacmen relatively quickly. We
also liked the idea of having a graphical sim-
ulator, capable of illustrating the behaviour
in a manner that is close to the way we as
humans would measure the quality of a pac-
man player.

1 Introduction

The goal of the project is to use genetic pro-
gramming techniques to evolve controller pro-
grams for pacmen. This is, programs that
control the way in which the pacman moves
around in, and (hopefully) finishes the play-
field. The original idea included ghosts (and
coevolution of pacmen and ghosts), but we
found it hard enough to evolve pacmen that
could just finish the field relatively cleverly.
The goal of the pacman is thus to eat all cheeses
in a 19x19 playfield®, using as few moves as
possible.

The idea in genetic programming (GP) is
to supply the genetic system with program-
ming constructs, from which meaningful pro-
grams can arise [1]. Like in an evolutionary
algorithm (EA) [4], we have a population of
individuals. In EAs, the individuals represent
potential solutions to a given problem, whereas
GP individuals are programs.

An attempt has been made earlier at evolv-
ing pacman controllers, by John Koza [1]. He

succeeded in evolving controllers that were some-

what good at playing pacman. His system in-
cluded ghosts. We have chosen a different ap-
proach at the evolution, since Kozas system in-
cludes terminals? like “Run away from nearest

8See screenshot on page 86
9see next section

ghost” and “Progress towards nearest cheese”,
and others that make it almost trivial to evolve
relatively good pacmen, since a pacman with
nothing but the latter of the mentioned con-
structs is not among the silliest. More in what
we believe to be the spirit of evolutionary com-
putation, we will try to evolve the programs,
instead of coming up with templates like the
above mentioned. After all, evolved solutions
often surprise the human supervisor, so it may
not pay to feed the system with constructs
imagined to be meaningful by the program-
mer.

2 The Strategy Tree

In our project, the candidates are represented
by tree structures (hereafter referred to as strate-
gies), that can be evaluated at any given time
(the evaluation possibly depends on the state
of the playfield and the player). Every indi-
vidual in the population (every pacman) has a
strategy. This strategy is evaluated every time
the pacman has a choice to make, which is at
every cell in the playfield. The basic movement
unit is one cell in the field.

The strategy tree is, as mentioned, eval-
uated every time the pacman has to decide
where to go next. At first, our implementation
was a bit naive, as an evaluation of a strategy
at a given point always yielded just one direc-
tion, namely the direction that the strategy
suggested to go in at that time. A strategy
was free to choose an illegal direction, as the
simulator takes care of this. Two kinds of ille-
gal moves can be made. First, a pacman can
for instance be heading along a long straight
path to the right, and suddenly choose to move
down, in which direction there is a wall. In this
case, the simulator ignores the desire, and tells
the pacman to continue in the direction is had
before.

Second, imagine a strategy that always eval-
uated to “go right”. Soon, that pacman will
hit the wall, in which case the pacman is sim-
ply stopped. In most real pacman games, it is
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possible to stop the pacman by running into a
wall, which the evolved pacmen were also al-
lowed to do in our system. A strategy like the
one mentioned, that always evaluated to “go
right”, will of course be unable to complete
the field, and will receive a high fitness value
(selection of course favoring low fitnesses).

With this initial approach, a rather large
strategy tree was needed if a pacman should
be able to finish the field in any reasonable
number of moves (thus making it very diffi-
cult for the system to evolve good strategies).
Therefore, we modified the evaluation process
to no longer yield a direction, but instead four
numbers, each representing the score that the
strategy gives a particular direction at the eval-
uation time.

From these four numbers, the ones rep-
resenting illegal moves are set to zero, and
a small value is added to all the legal ones.
Then a selection is made probabilistically be-
tween the legal directions, so that the higher
the score a direction has, the more likely it is
to be chosen. This way, a legal direction is
always chosen, and a small amount of nonde-
terminism is introduced. This proved to be a
more realistic choice, making it easier for the
system to evolve pacmen capable of actually
playing pacman somewhat intelligently (!).

Below the various terminals and nontermi-
nals from which the strategy trees are con-
structed are briefly described. The terminals
are the “information units” that the nonter-
minals can combine into trees, which can be
evaluated at any given time. Some of the ter-
minals inform of the status of the playfield or
the pacman when evaluated, while others are
just constants. Thus, a tree (or a subtree)
with only constant terminals can be simplified.
This may not always be an adventage, which
is the reason why we have included a simplify-
mutation operator (so that not all trees are
simplified)!C.

Onormally, “redundant” information such as a sub-
tree with constant terminals can prove to be useful
later, i.e. exons in DNA sequences

2.1 Nonterminals

The nonterminals are the tree nodes that have
one or more subnodes. A node has one of the
following types:

e Integer
e Boolean
e Direction

e Points

Integer nonterminals

e Plus. This node has two subnodes, both
of type integer. When this node is eval-
uated, we evaluate both subnodes, sum
up the resulting values and store the sum
as the value of the Plus-node.

e Mult. Equal to Plus, except that the
result is the product instead of the sum.

e DistanceToCheese. This node has one
subnode of type direction. When eval-
uated, the result is the distance (in cells)
to a cheese in the direction specified by
the subnode, or a large number if no cheese
is found, or a wall is encountered before
a cheese.

Boolean nonterminals

e AND, OR and NOT are the usual boolean
operators with 2, 2 and 1 operands of
type boolean, respectively.

e LessThan is the strict numerical ’;” op-
erator that compares the values of 2 subn-
odes of type integer.

e Equal is the comparator, in our case
overloaded to handle all applicable types,
i.e. integer, boolean and direction.

e IsWall. This node operates one a subn-
ode of type direction. It returns true in
the case where the cell adjacent to pac-
man in the given direction is a wall.
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Direction nonterminals e MoreUp. When this terminal is evalu-
ated, it considers the position of the pac-
man in the playfield, and returns true if
the majority of the remaning cheeses are
above the pacman; otherwise false is re-

e Reverse operates on one subnode of type
direction, and it returns the opposite
direction of the one given.

turned.
e If is a 3 argument conditional operator. bl
It has 1 subnode of type boolean and o
2 subnodes of type direction. If the * MoreLeft is like MoreUp, except hor-
izontal.

boolean subnode evaluates to true, If will
return the value of the first direction subn-
ode; otherwise, it returns the value of the

. . Direction terminals
second direction subnode.

e Constants include the four directions
Points nonterminals relevant for playing pacman, i.e. up, down,

left and right.
The root of any strategy tree has type points

(since we modified the system to the point-

.. e DINC. This is the direction with near-
giving approach).

est cheese node, that has proven to be
quite popular among evolved strategies.
Earlier, we commented on John Kozas
use of pre-thought-of “cheat-mode” ter-
minals like “proceed in the direction of
the nearest cheese” and so. This termi-
nal is somewhat similar, except that the
action is not included in the terminal,
wherefore it is up to the evolution to add
a suitable amount of points to this ter-

e AND is used to combine AddPoints minal, if it so chooses.
nodes (and has nothing to do with boolean If no cheeses are visible (in the sense that
AND) into sequences. The root of a strat- a pacman cannot see through walls) from
egy tree is either a single AddPoints the location of the pacman, we return

node or an AND node. Using AND nodirection, which is a dummy direc-
tion. This proved to be necessary, since

no meaningful direction-value can be
determined in this case. Another option
would be just to return a random direc-
tion, but this would always infer some
2.2 Terminals time periods of completely random walk-
ing in any strategy who chooses to make
use of this terminal. By inspecting some

e AddPoints is the construct that allows
a strategy to specify which direction(s)
that are feasible at the time of evalua-
tion. It has two subnodes, one of type
integer and one of type direction. When
evaluated, the integer specifies the num-
ber of “points” to be added to the spec-
ified direction.

nodes, a strategy can add points to more
than one direction (which of course is es-
sential to a good strategy).

Integer terminals

e Constant integer value. In the initial- of the strategies generated by the sys-
ization, constant integer values are as- tem, we found that many of the better
signes a random number. The evolu- ones made use of this terminal in combi-
tionary process can modify these values nation with the MoreUp and MoreLeft
through mutation. terminals. This makes sense, since the

DNC terminal is very good at “cleaning
up” local areas, while the MoreUp and
MoreLeft terminals guide the pacman

e Constants. The usual true and false in the direction of other unexplored areas
boolean constants. when the local neighborhood is emptied.

Boolean terminals
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3 The genetic programming sys- 3.3 Selection

tem

The flow of the system is described here. Like
in an EA, the idea is to evolve better and bet-
ter individuals over generations, by means of
selection, crossover and mutation carried out
on a population initialized (somewhat) ran-
domly.

3.1 Population initialization

We generate a number of pacmen, giving each
of them a random strategy tree of a random,
but controlled size. The random strategy gen-
erator is not counted on to generate meaning-
ful programs, but rather to introduce many
(and hopefully all) of the different constructs
supported, so that the evolution has a better
chance of combining them into meaningful pro-
grams. Thus, the random strategy generator is
only used in the beginning of the evolutionary
process.

3.2 Fitness evaluation

Here, the individuals in the population are tes-
ted for their ability to complete the playfield.
We have built a simulator, into which a pac-
man can be inserted. The fitness is defined
simply as the number of moves in which the
playfield is completed, with an certain upper
limit. That is, we do not differentiate between
pacmen that can possibly complete the field in
more than this maximum of moves, and pac-
men that cannot complete the field at all.
The simulator can be used in two ways. First,
it can simulate the run of a pacman as fast as
the computing environment allows. The only
information that is extracted from this simula-
tion is the fitness. Second, we can pick an indi-
vidual from the population, insert it in the sim-
ulator, and graphically watch how it behaves.
Note that the same pacman will (probably)
not complete the field two times in the same
way, since the strategy evaluation is somewhat
probabilistic. More about the fitness evaluta-
tion in the section covering the experiments.

Since the mutations in GP generally introduce
rather substantial changes in the affected in-
dividual, we have added a small catch to the
selection process. When the fitnesses of the in-
dividuals are measured, the best 10% of them
are made untouchable by mutation. This way,
we do not run the risk of having some of the
best strategies destroyed by mutation. After
all, the mutation is expected to bring about at
least as many negative changes as positive.
For natural selection, we use tournament selec-
tion. As many times as there are individuals,
we select two individuals at random. Their
performance is measured in the simulator, and
a copy of the faster (fitter) one replaces the
slower one. By modifying the existing popu-
lation (instead of creating a whole new popu-
lation), we are sure to maintain some of the
fittest individuals.

3.4 Crossover

The system is initialized with probabilities for
crossover (py) and mutation (p,,). The crossover
operation used selects two parents at random,
and with a probability p,,, it computes two off-
spring by exchanging subtrees of correspond-
ing types in the strategies. That is, we locate
a random point in the strategy tree of parent
1. Next, we select at random a node of the
same type in parent 2, respecting the size of
the strategy tree of that parent. These are
then swapped.

3.5 Mutation

There are many types of mutation available
in GP. With probability p.,, an individual is
mutated with a random of the following muta-
tions:

e Subtree swap
A random subnode with two subtrees of
the same type is selected, and the sub-
trees are swapped. For example,
if DistanceToCheese(left) < 5 then

can be mutated into
if 5 < DistanceToCheese(left) then

and so on.
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e Constant mutation
Here we modify the constant terminal
values. An integer can be changed to a
number up to 50% higher or lower, and
constant directions can be assigned an-
other direction at random (i.e. up can
be changed to down and so).

e Grow
Here, we replace a terminal with a sub-
tree of the same type. For example, a
constant direction left can be replaced
by a subtree that instead computes a di-
rection using some of the terminals that
inform of the state of the playfield or the

pacman.!!

e Shrink

This is the opposite of the Grow muta-
tion operator. A subtree is replaced by a
simple constant value of the correspond-
ing type. It is operators like Grow and
Shrink that make the mutations in ge-
netic programming induce more profound
changes in the individuals, compared to
the usually quite small changes made to
potential solutions in an evolutionary al-
gorithm for numerical problems.

e Operator switch
This mutation operator replaces a node
with another node that has the same num-
ber and types of subnodes. For example,
3 + 4 can be mutated into 3 * 4, or a
boolean AND could be replaced by OR.

4 Experiments

For this section, we have evolved two genera-
tions of pacmen. The first one is evolved from
an entirely random initial population, the sec-
ond one included a relatively good hardcoded
strategy for the evolution to “continue”. Since
the fitness evaluation is quite nondeterminis-
tic, we have to test a strategy by letting it
simulate a run more than once, and then use
the average number of moves required to finish
the field as the fitness measure.

"Due to technical problems with the implementa-
tion, this operator is currently disabled.

Performance graphs for the two evolved pop-
ulations can be seen on pages 84 and 85. The
test setup is a population of 50 individuals,
evolved over 100 generations, with the fitness
evaluation performing 10 simulations of each
strategy. A larger population is not much of
an advantage, see conclusion. The probabili-
ties for crossover and mutation are 30% and
40%, respectively.

The experiments have shown that a strat-
egy that gives points exclusively to the DNC
terminal, can sometimes finish the field very
quickly (300 moves or so). This is understand-
able. The DNC node is good at clearing up
local areas, but as soon as no cheeses are visi-
ble (as described earlier), the pacman will per-
form completely random movements (because
the DNC node will then not add points to
any direction, making the decision a random
selection of legal directions). At other times it
essentially performs random walk the major-
ity of the time, and may require 10.000 moves
or more to finish the field. The hardcoded
strategy is quite stable in the sense that it al-
ways uses between approximately 400 and 700
moves to finish the field. The hardcoded strat-
egy looks like this:

Add 10 points to [if MoreUp then Up else
Down| AND Add 10 points to [if MoreLeft
the left else right] AND Add 30 points to
CurrentDirection AND Add 60 points to
DNC
This quite simple strategy is able to always fin-
ish the field quite fast illustrates the strength
of the DNC terminal. In fact, when the hard-
coded strategy is included in the initial popu-
lation, the evolution seems to end up with two
kinds of strategies. One kind is mostly copies
of the hardcoded strategy, with only minor
changes in the points given. The other kind
is mostly strategies that add a lot of points to
DNC only. These strategies survive because
of their sometimes very fast runs, which cover
up for their usually slower performance (than
the hardcoded).
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5 Conclusion

Since the introduction of the DNC node, the
evolution has become somewhat trivial. In a
sense, the node is a bit “too good”. By adding
many points to this node, a pacman will have
a tendency to finish large areas of cheeses with
a minimum of useless wandering around. Only
when no cheeses are visible from the location of
the pacman, the strategy has to come up with
some way of locating unexplored areas. But
often, more than one half of the field can be
cleared by a single “good run” by the DNC
node. As can be seen from the performance
graphs on page 84 and 85, the evolutionary
process finds good strategies almost immedi-
ately after it starts. The average fitness im-
proves over generations, but the best individ-
ual usually does not improve that much.

One way that the process could be lead to
create better (but not that much) strategies
is to build into the fitness function some mea-
sure of deviation, so that there is some punish-
ment for large variations in required number of
moves. This way, we could evolve more reliable
strategies, although a different strategy might
in special cases be faster.

There are 194 cheeses in the field initially.
A pacman walking around at random will fin-
ish the field in usually around 8.000 moves,
so at first we just hoped for something better
than that.

The evolution comes up with at least one
strategy that can finish the field in about 600
moves relatively quickly. Taken into concider-
ation that there are 194 cheeses, there is not
that much room for improvement, which takes
some of the motivation for inventing new tree
nodes away. The success of the pacman is not
solely creditable to the evolutionary process,
but more likely to the obvious strength of the
DNC node.

The best run we have seen so far is 330
moves, by an evolved strategy, that was pretty
bad in general, so in the record-setting run, it
was just lucky.

The graphical simulator has been a useful
tool in the development of new strategy tree
nodes, as the introduction of new constructs
usually yield new behaviour properties, that
are hard to evaluate otherwise. In this fashion,
we have used the graphical simulator as sort of
an aesthetical fitness function. By observing
the behaviour of the pacmen in the simulator,
it becomes more clear what type of nodes are
needed to achieve further improvements.

The implementation has certain drawbacks,
among these is the relatively large amount of
code it takes to introduce new tree nodes. For
each new node, several methods must be im-
plemented. This could have been automated
if a different style of implementation had been
chosen.
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Different Evolutionary Approaches to Football
Expertise

Henrik Pedersen and Jan Midtgaard

Abstract— This article describes three dif-
ferent Genetic Programming approaches to

achieving football expertise. In each approach

we try to predict the results of soccer matches
on the basis of previous results. The goal
of our project was to use the acquired evo-
lutionary skills on some practical problem,
and as a side-effect gain wealth. The ap-
proaches results in expert trees better at
forecasting than random guessing, but not
quite as good as a human expert.

1 Introduction

The following sections describe three more or

less similar approaches to gaining football ex-

pertise. All of them are based on Genetic Pro-

gramming, and the purpose is simply to be

able to predict the outcome of upcoming foot-

ball matches on the basis of former results.
The three approaches cover

Since the trees base their predictions on previ-
ous results, season '96 is given as initial expe-
rience, thus the trees end up trying to predict
seasons '97-’00, in total 1520 games. The cur-
rent season (’01) has been chosen as our vali-
dation set, in total 133 games (see figure 1).

initial
experience  games for "fitness prediction”
\ I \
96 | '97 | '98 | '99 | '00 ’01\
\ I |
training set validation set

Figure 1: The data set.

2  What makes a good expert?

Before we even started to consider, what the

Class based trees This variant of decision trees trees should look like, we asked ourselves the

is a more or less traditional Machine Learn-

ing technique.

Point based trees Inspired heavily by [4] where

the idea is to award points to either of
the teams.

Grammar based genetic programming Here,

tree construction is based on a fixed gram-
mar, and the parse trees evolve in the
evolutionary process.

We have limited the involved dataset for
the project to the premier league of English
football. The results are from approximately 5
and a half season: 1996 up to December 2001.
This set is divided in two parts:

A training set On which we evaluate fitness
in the evolutionary process, and

A validation set On which the developed trees

are tested and compared.

following question:

What kind of knowledge is required
to make a good football expert?

To answer this question we consulted some ac-
tual football experts (bookmakers, web-pages
etc.), and came up with a bunch of ways to
measure the strength of any team, solely based
on the results of previous games. For instance
one could ask:

What is the average number of goals
Manchester United scored within the last
four games?

We also discovered, that more subtle knowl-
edge is used, like

What players are out because of injuries?

These kind of issues are of course much more
difficult to deal with, and therefore we chose
to ignore them.
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So now we had a good starting point: Given
a game, compare the strength of the two teams
and give a suggested result as output.

2.1 Comparisons

The strength of a team is based on such things
as average score, current position and so on.
We have predefined 12 meaningful comparisons,
some of which are described below. Each com-
parison returns a number. Positive values favour
the home-team, negative values favour the away-
team and values around zero favour none.

For instance the average score comparison

looks like this:
avgscore(home-team) - avgscore(away-team)

Here are some of the comparisons:

Position Return the difference of the two teams
position.

Points(int n) Return the difference between
the points obtained within the last n games.

AvgScoreHere(int n) Compare the average
number of goals scored, but only con-
sider home-goals for the home-team and
away-goals for the away-team, instead of
just comparing the overall average. Again
n is the number of games to go back in
history.

Games Since Last... Now, imagine that there
is a rule saying, that sooner or later any
team will eventually have a draw. What
this comparison does is to suggest the re-
sult, that is most probable when consid-
ering the number of games played since
the last 1, X or 2. For instance if it has
been 8 games since both teams played
a draw, this comparison will suggest a
draw, because sooner or later they will
have a draw. Quite fuzzy, but worth
mentioning...

Internal Return the point difference from games
played between these two teams.

back 1...5 games, but we can also tell the com-
parison to look at an entire season up till the
current one. This might turn out to be very
important for predicting results.

3 Class Based Trees

Our first approach is based on a very sim-
ple observation: Each game belongs to one of
three possible classes:

1, X or 2

Therefore, if you are given a game, all you have
to do is to classify it.

One possible way of solving this task is to
construct a decision tree. Decision trees clas-
sify instances by sorting them down the tree
from the root to some leaf, which provides the
classification of the instance. Each node in the
tree specifies a test of some attribute of the in-
stance, and each branch descending from that
node corresponds to one of the possible values
for this attribute.

Koza discovered that a Genetic Program-
ming approach was actually able to compete
quite good with standard algorithms, such as
ID3 [1]. Therefore we decided on trying this
(see figure 2).

Machester United -

Aston ¥illa
Avay

Int Games

Awny

Figure 2: Example tree.

3.1 The Nodes

Each Node should represent some attribute for

One important thing to notice is, that for some
comparisons, you can specify how far to go
back in history. Most of our comparisons go

describing and classifying a game. This is where
the comparison functions described above, come
into the picture.



Topics of Evolutionary Computation 2001 ]9

EVALife, Dept. of Computer Science, University of Aarhus

A node can have 12 different kinds, all im-
plemented on top of the preprogrammed com-
parison functions.

Each node is at construction time assigned
either two or three legs. In case it is assigned
only two legs, the node decides to branch either
the left or right child by evaluating the nodes
function and inspecting the output. A thres-
hold (comp) determines the separation point
between branching left or right (see figure 3).

In case a node is assigned 3 legs another
variable - indexLen - comes into play. This
determines the interval of function (difference)
values around comp, in which the node decides
to branch the middle-leg (see figure 3).

<00j;//

2 legged 3 legged

>comp
<comp-indexLen >colp+indexLen

[comp-indexLen;
comp+indexLen]

Figure 3: The nodes.

Now, there are two important things to
notice here. First of all, some comparison-
functions take an argument, telling them how
far to go back in history for instance. This ar-
gument is saved as part of the Node and then
used, when the Node actually calls it’s func-
tion. Therefore, there are potentially much
more Nodes than just 12. If each kind of Node
should be represented in each tree, the trees
would be enormous, which contradicts the in-
ductive bias of decision trees (A preference for
smaller trees over large trees [3]). To reduce
the complexity we don’t allow a path to have
more than one occurrence of each Node type.

Second of all, in ordinary decision trees
the attribute values are discrete, which is not
the case in our trees, since many comparison-
functions return double values. This makes
it much more difficult to find the appropri-
ate thresholds at each node. To handle this
problem, we decided that each node can only
have two or three children. This, first of all,
reduces the size and complexity of the tree, be-
cause fewer thresholds have to be found. Fur-
thermore it seems reasonable to have at most

three children per node, since we only have
three classes.

3.2 The Leaves

Each Leaf holds a value, which represents it’s
class. The possible classes are 1,X and 2, which
corresponds to home-win, draw and away-win
respectively.

3.3 The Evolutionary Algorithm

The EA used here, is just a simple standard
EA. The main part of the algorithm looks like
this:

initialize()
evaluate()

while(n < GENERATIONS)
select()
crossover(c_o_rate)
mutate (mut_rate)
evaluate()

Below each step is described in more detail.

initialise

Here we build a population of random trees,
where each node has either two or three legs.
The number of nodes in the tree is between 1

and an upper limit, scale_factor, which is one
of the parameters for the EA.

select

Selection is done by tournament selection of
size two. If two trees have the same fitness,
we prefer the smaller one, because this is con-
sistent with the assumed inductive bias, men-
tioned above.

crossover

Crossover is done the usual way by picking a
node at random in both trees, and then switch-
ing the two subtrees obtained this way.

mutate

There are several kinds of mutation:
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Expansion Expanding a leaf into new inter-
nal node.

Cutoff Cutting of a subtree at a random in-
ternal node, and substituting with a leaf.

Kind Switching Switching the type of the
node into another node of random kind.

Constraints

We have made the constraint on trees in the
population that having two or more nodes of
the same kind on any path from root to leaf is
not allowed, since it does not make sense con-
sulting the dataset for (nearly) the same query
twice. As described in Michalewicz’s book [5]
this is achieved by reducing fitness of the con-
straint breaking individual.

3.4 The Class Based Specific EA

The previous section pretty much captures the
basic idea used in the Point Based Trees also.
This section goes deeper into how the Class
Based Trees are really evolved.

Constraints

It sometimes happens, that almost all games in
the training-set ends at the very same leaf. In
other words, there are trees suggesting that al-
most all games belong to the same class, which
is not true. Therefore we search for such leaves
and replace them with a randomly generated
subtree.

We also make sure, that for no Node, all
of it’s leaves suggest the same class. If this is
the case, we try to change one or more of the
classes in the Leaves. Alternatively one could
also shrink such a Node into a single Leaf with
the given class.

The two steps

Actually, the evolving of Class Based Trees is
separated into two parts. In the first part we
try to find a set of Nodes, that are good clas-
sifiers. In the second part we then use these
Nodes for constructing entire decision trees.
What does it take to be a good classifier?
Well, in traditional Machine Learning tech-
niques, one talks about entropy. We will not

get into details here. The point is, that given
entropy as a measure of the impurity in a col-
lection of training examples, we can define a
measure of the effectiveness of an attribute in
classifying the training data. This measure is
called information gain.

In step one we use the information gain as
fitness. Mutation is only made on comp (see
figure 3) and goi, which is short for Games Of
Interest - how far should a given Node go back
in history.

In step two we develop entire decision trees
by using only the Nodes found in step one. Be-
sides basic mutation we also mutate the Leaves,
by changing their classes. Here the fitness is
different. We simply return the number of cor-
rect classifications.

4 Point Based Trees

The point trees was inspired by T'Sang, Li and
Butler’s Eddie-article [4], using genetic pro-
gramming to forecast horse racing results among
other things. In this article the authors use a
point giving system in which tree nodes ask
expert questions and awards each horse points
on the basis of the answer.

Using this idea each node in the point based
tree asks expert questions regarding each game
using the preprogrammed functions (see the
Functions-section). The node then awards points
to either the home- or away team, or maybe
neither of the teams, and furthermore traverses
down the left, right or middle leg respectively.

Each match is thus evaluated on the root
of a point based tree, forecasting a home-win
(1) if the difference between the home teams
points and the away teams points is above a
certain threshold upper, an away-win (2) if the
difference is below a certain threshold lower,
and a draw (X) otherwise.

4.1 Nodes

Each point based node has a scaling factor
scale, which is multiplied with the function
value before either of the teams is awarded the
product of the two. In this sense scale de-
termines how much influence the node should
have on the final forecast.
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In case a node is assigned only two legs,
evaluation forces the node to favour either the
home or away-team by awarding one of them
its points, if the function value is greater or less
than the node’s threshold (comp) respectively
(see figure 3).

In case a node is assigned 3 legs, the node
can decide to assign points to neither of the
teams, and traverse the middle-leg down the
further evaluation if the function value is inside
the interval determined by comp and indexLen
(see figure 3).

4.2 The Point Based Specific EA

The EA on point based trees works as de-
scribed in the last section on class based trees.
The set of point based specific issues in the EA
is described in the following section.

Node specific mutation

The EA on point based trees also performs a
more specific mutation on the node-level of the
trees. The algorithm traverses the tree, and
with a certain probability comp or scale is mu-
tated, corresponding to changing the “break-
point” of the node and the node’s total influ-
ence respectively.

Fitness

The fitness of point based trees is simply the
number of correctly forecasted results. This
number is thus between 0 and 1520.

Adding of genetic material

The point based algorithm adds new genetic
material to the evolution, by adding a single
random tree to the population in each genera-
tion. The new tree simply replaces a random
tree in the existing population.

Constraints

In this approach we simply withdraw 100 from
the fitness of an individual for every double
occurrence of the same node type on a path
from root to leaf.

Dynamic fitness

The fitness of each tree in the point based EA
changes over time as the evolution progresses.
The dynamic calculation is based on the fol-
lowing:

Avgy : Average point difference between the
two teams for a 1.

Avgyx : Average point difference between the
two teams for a X.

Awvgs : Average point difference between the
two teams for a 2.

All three numbers are averages over all re-
sults of the evaluation in the previous gener-
ation. New upper and lower values are then
calculated as the averages between Avg; and
Avgx, and Avgx and Avgo respectively. In
this way each tree tunes its boundary points
on the basis of its previous evaluation values.
At the same time this means that each tree
is not guaranteed the same fitness in the fol-
lowing evaluation. This dynamic fine-tuning is
therefore stopped halfway through the gener-
ations, locking the boundary limits upper and
lower for the rest of the evolution.

5 Grammar Based Genetic Pro-
gramming

In 2000 two Chinese computer scientists, M.L.
Wong and K.S. Leung, published a book on a
system called LOGENPRO [5]. LOGENPRO
is a framework, that combines inductive logic
programming and genetic programming to do
data mining. The basic idea is, that you pro-
vide it with some sort of building blocks for
constructing logic rules, and then it will de-
velop rules based on that.

What we did, was to find a hole new set
of comparisons separated into three groups:
Comparisons that we would expect to be rele-
vant for predicting 1’s, 2’s and X’s respectively.
We came up with 33 such rules.

These comparisons were then used for build-
ing a set of logic rules, using only AND, OR
and NOT (see figure 4).

Note: Unfortunately we haven’t been able to
find LOGENPRO anywhere, so we just
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Figure 4: Example tree.

adopted the basic ideas and tried to make
our own version. The development of
this approach is therefore still on an early
stage, but since we have spent a lot of
time on it, we think that it is worth men-
tioning...

5.1 Comparisons

All comparisons take a form, that is more or
less similar to this one:

avgScore(HOMETEAM) >
avgScore(AWAYTEAM) + N

where N is a positive number, which could be
considered, what is sometimes called a hand-
icap in favour of the away-team. This rule is
expected to be relevant for predicting 1’s, be-
cause it is obviously only true, if the home-
team scores more goals than the away-team.

Here is a rule, that we expect might be
relevant for predicting draws:

avgScore(HOME) - avgScore(AWAY) < N
AND
avgConc(HOME) - avgConc(AWAY) < N

This is true if the teams have a similar goal-
score and a similar number of goals conceived.
We guess, that in such case, the game might
end up tied.

5.2 The Leaves

Each Leaf represents a comparison, and can
therefore take 33 types. It holds the thresholds
N and goi, telling how far to go back in history
when evaluating the comparison.

The Leaves are evolved in a separate run,
allowing mutation of N, goi and the Leaf-type.

As with the Class Based Trees the fitness is
just the information gain.

5.3 The Nodes

We have two kinds of Nodes, each having two
children. There is an AndNode and an Or-
Node. Each of these has four variants: One
for each combination when negating one, two
or none of the children.

In this way each tree contributes with a
logical rule, that is either true or false.

5.4 Developing Trees

At this point we have tried evolving the trees in
many different ways, and we have tried many
different kinds of fitness calculation.

At a very early stage we simply tried to
evolve rules for 1’s, X’s and 2’s separately, but
it occurred to us, that finding a good fitness
in this case was actually quite hard. The best
fitness calculation was simply to give the tree
a point if it evaluated to true on a given game,
and the result of this game was the one we were
looking for. On the other hand we would with-
draw one point if the rule evaluated to true and
the result was different than the one we were
looking for.

Unfortunately it seemed, that most trees
evaluated to the same truth-value for almost
all games, resulting in very bad fitnesses. So,
we adopted the idea behind decision tress: What
about considering each rule as some kind of
classifier, and then award it by it’s ability to
classify the games based on information gain?
Why is this interesting? Well, if you can make
even better classifiers, than the nodes in the
class based trees, perhaps you could develop
even better decision trees, by using these rules
as Nodes.

The grammar based trees evolve the rules
by first making a set of good leaves, or com-
parisons. Then we try to combine these with
different variants of AndNodes, since and-rules
are more powerful than or-rules. Then at the
end we try to combine the best and-rules with
different variants of OrNodes too see if this will
give a better information gain.
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6 Random forecaster

As a quality reference for the three approaches

we have implemented a random forecaster. Even

random forecasting is not completely trivial.
For one thing draws do not occur as often as
a win, and a loss occurs even less often as can
be seen in table 1.

[ [X ]
training set 724 404 392 1520
percentage 47.6% | 26.6% | 25.8% | 100%
validation set | 50 45 38 133
percentage 37.6% | 33.8% | 28.6% | 100%
total 774 449 430 1653
percentage 46.8% | 27.2% | 26.0% | 100%

Table 1: The relationship between number of
home-wins, draws and home-loses

The random forecaster was run on the val-
idation set with parameters corresponding the
last line in table 1. The results can be seen in
table 2.

Run 1 X 2 Total
1. 24 11 6 41

2. 29 9 8 46

3. 28 12 10 50

4. 25 9 11 45

5. 20 13 16 49
Average | 25.2 | 10.8 | 10.2 | 46.2

Table 2: Outcome from running the random
forecaster.

The random forecaster ended up forecast-
ing an average of % = 34.7% of the games in
the validation set. It is worth mentioning that
this corresponds to the one third, obtained
from randomly forecasting each outcome with

equal weights.

7 The results

Our results show, that the point based ap-
proach is by far the best, and therefore most
of the testing has been made on this version.

7.1 Point based approach
Performance

The results of a single run of the point based
algorithm can be seen in figure 5. The algo-
rithm was run with a population size of 15 for
200 generations, and crossover-rate 0.4, mutation-
rate 0.3 and node specific mutation-rate of 0.2.
From each generation the fitness of the best in-

‘ total ‘ dividual is plotted in the figure.

There are several things to notice about
the figure. For one thing there is a nice con-
vergence toward fitter - best - individuals. An-
other thing that is worth noticing is the clear
difference between the two halves of the evo-
lutionary process. Because of the dynamic fit-
ness, the fitness of the best individual in the
population may vary from generation to gen-
eration. This results in a fluctuating first half.
The second half is more continuous, and this
part resembles more or less the fitness of a tra-
ditional EA or hill-climber. One notices how-
ever, that the fittest individual does not nec-
essarily survive. This can be due to mutation
of the best individual, by pure bad luck in the
selection process or because the individual is
exchanged with the random individual thrown
into the population. In the first half this may
also be because of the dynamic adjustment of
upper and lower boundaries, on which the fit-
ness is based.

760

T T
point based

740 -

720 -

700 H
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generation

Figure 5: Evolving point based trees.
The reason for not explicitly keeping the

fittest individual in the population is to insure
diversity. With explicit keeping of the fittest
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individual, the algorithm can get too focused
on fitter individuals. With this less broad col-
lection of genetic material, the algorithm may
converge too fast, and end up in a local opti-
mum.

7.2 Experiments on point based trees
Dynamic fitness

We have made a number of experiments con-
cerning the point based tree approach. One
important experiment was testing the concept
of dynamic fitness. Does it make sense to move
the boundaries lower and upper, and if so
when should the tuning stop, if it should stop
at all?

In figure 6 the result of running a static EA,
a completely dynamic EA, and an EA stopping
the dynamic tuning after one third of the gen-
erations is plotted. Each EA had 20 individu-
als, and equal crossover- and mutation-rate of
0.3.
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Figure 6: Comparing degrees of dynamic-Ness

It is noticed how poor the totally dynamic
EA is capable of keeping it’s population fit, be-
cause of the constant parameter tuning. The
version adjusting only in the beginning seems
more promising, and the static EA seems to
perform best. This is not necessarily true in
general, since the optimal upper and lower
limits for each tree may be quite different, and
especially from the hard-coded values assigned
to the trees of the static EA. The figure thus
illustrates the difficulty of optimising a vary-
ing function, a problem which is very hard, as

is known from for instance dynamic job shop
scheduling.

Number of legs

Another line of experiments were related to the
nodes of the point based tree. These are by
nature randomly made either 2 or 3 legged,
but one could argue that they should be only
2 legged or only 3 legged overall. For one
thing giving the middle leg option to the nodes
just makes the search space even larger. An-
other more specific reason for keeping for in-
stance only 2 legged nodes, could be to force
the trees to separate the teams on a clear bor-
der, and thereby handing out more points than
in a strict 3 legged version. In this way qual-
ities of poorer teams could be acknowledged
by getting points, more or less in a brute-force
manor. On the other hand a strict 3 legged
version would have an advantage on recognis-
ing X'’s, since every single node is given the
option of not awarding any of the teams.

750

L Blege—"
740 / random legged -------- 1

660 —

650

Figure 7: Comparing number of legs in nodes

In figure 7 the results of running a random-
legged, a 2 legged and a 3 legged version of
the point based EA with 20 individuals for 50
generations can be seen. The 3 legged version
does seem to gain advantage from the third
leg, and ends up with a better result than the
random version. This may be due to the larger
search space, which the random version has to
handle. The random version performs quite
well with this in mind, though.
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Addition of genetic material

The last experiments were concerned with the
addition of a new random tree in each gener-
ation. This can turn out to be a bad idea,
since it substitutes a random individual in the
population, in the worst case the fittest.
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Figure 8: Addition vs. no addition of new trees

In figure 8 two runs of the EA is plotted.
Both of the runs with same parameters and a
population size of 20. As can be seen in the
figure this adding does make quite a difference,
substituting the fittest individual in the run
already in the second generation. Cancelling
this addition does not guarantee “the survival
of the fittest” however, as can also be seen.

Conclusion of experiments

On the basis of the previous subsections a more
or less optimal configuration of the point based
EA, would be without the addition of random
trees (or maybe letting it substitute the least
fit individual in the population), with all nodes
being (random or) 3-legged and maybe with a
gradually lowering of the tuning of the fitness
bounds. However we have not had time to per-
form such experiments.

Best tree

The most successful tree of the above, when
later run on the validation set, has a fitness of
747. It was produced by the point based EA
in a version with no random tree adding. The
fitness corresponds to a forecasting 49.1% of

the 1520 games in the training set. When run
on the validation set the same tree was able to
predict 57 of the 133 games, corresponding to
42.9% (see table 3).

1 X 2 Total
Predicted | 46 4 7 o7
Percentage | 92.0% | 8.9% | 18.4% | 42.9%

Table 3: Validation results for the point based
approach

One should notice that the tree has most
difficulties forecasting a draw, all though a game
ends more often with a X than with 2, at
least according to the statistic material on our
dataset (see table 1). The reason that it actu-
ally ends up predicting more 2’s, must be that
these are easier to predict on the basis of pre-
vious results, though occurring less often than
Xs.

The tree can be seen in figure 9. One can
notice how the tree divides the games in two
halves, by having placed an ’'InternalNode’ in
the root. It does make sense, that among the
things having influence on the outcome of a
game, the outcome of the previous internal
games between the two teams, is one of the
more important ones. All paths from the root
down has an 'avgGoal’ or ’avgConceived’-Node
of some kind. Again it makes good sense after
the first classification, to further classify the
teams and award points on the basis of their
ability to score goals, and keeping their own
goal clean.

7.3 Class based approach

The class based approach did not turn out that
good compared to the point based approach.
We believe that this is due to the fact, that
there is no connection between the class, a leaf
provides, and the path down to it. Remember
that the comparisons are actually made to pro-
duce positive values, when the home-team is
favoured, and negative values, when the away-
team is favoured. This is used in the point
based trees.

No tree broke 630 in fitness. But the excit-
ing thing about this, is that one can expect the
information gain to be high. What does this
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Figure 9: The best tree produced by the point
based approach.

mean? Well, for instance one tree of fitness
617, guessed 82% of the 1’s in the training set,
and almost no X’s and 2’s. This suggests, that
one could maybe combine different trees, and
make some kind of voting for a prediction.

It is worth mentioning, that the best in-
dividual was able to predict 56 games in the
validation set (see table 4).

1 X 2 Total
Predicted | 45 3 8 56
Percentage | 86.5% | 7.8% | 17.8% | 42.1%

Table 4: Validation results for the class based
approach

The corresponding tree is shown in figure
10.

This is a very small tree, and it’s actually
not that interesting, since most games end up
in the same few leaves. By changing the class
of these leaves, one could make this tree an
expert on X’s instead of ones.

7.4 Grammar based approach

All results for this approach are based on cal-
culating information gain. We didn’t really
come up with any super-classifiers. Some of
the best ones looked like this:

What is interesting though, is that these
might actually turn out to be very useful as
nodes in decision trees. Remember, that the fi-

Figure 10: The best tree produced by the class
based approach

1 X 2
Percentage | 60% | 37% | 43%
Percentage | 10% | 61% | 57%

Table 5: Results for the grammar based ap-
proach

nal decision depends on evaluating more nodes.
Therefore, what we see above is that we are
able to construct nodes, that will increase the
probability of for instance a 1, and maybe com-
bining such nodes in a special manner, will give
better decision trees, than the ones found in
the class based approach.

8 Conclusions

Not all three approaches to forecasting foot-
ball results were equally successful, and not all
approaches were given equal attention. Two
of them outperformed the random forecaster
though. This seems satisfactory when one bears
in mind that the validation set does not resem-
ble the training set much: The difference be-
tween the percentage of home-wins (1’s) in the
two sets is as high as 10%. Since home-wins
seem the easiest result to forecast, this could
have quite an impact on the performance of
our approaches when tried validated.

In the project we have made a number of
limitations. For one thing, none of the trees is
given more background information than the
previous results. A true expert would know all
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details regarding players, injuries, team setup,
etc. ..

Another thing is team-specific-Ness: With
the current set of functions all nodes should
reflect a general property: E.g. teams play-
ing an away game against another better scor-
ing team, has a disadvantage. The trees are
not able to recognise a specific team - for in-
stance Manchester United’s difficulties playing
away games against Nottingham Forrest. A
true expert would indeed be team specific in
this sense.

Finally the trees lack the ability to forecast
surprises. The surprising element is an impor-
tant part of the game football. It makes the
games worth watching, since a result is never
certain until the game has been played. How-
ever this same element makes life harder for
our EA’s.

Therefore we are satisfied with the quality
of our predictions, even though they cannot
match a true human expert.
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Abstract— Fractal image compression is a
compression technique, which relies on the
vast amount of self similarities present in
natural images. In this article we inves-
tigate an evolutionary approach to fractal
image compression, and an approach based
on local search. The local search approach
is able to compress realistic images with a
high compression factor while maintaining
reasonable quality, but for compression am-
ing at high quality it cannot compete with
standard JPEG compression.

1 Introduction

Fractal image compression is a compression
technique, which relies on the vast amount of
self similarities present in natural images. The
self similarities are used to represent parts of
an image as mappings from other parts of the
same image. Figure 1 shows self similar regions
in an image widely used as a benchmark for
image compression algorithms. The mappings
normally used consist of affine transformations
from parts of the image combined with adjust-
ments of contrast and brightness. For techni-
cal reasons the mappings must be contractive,
but it is possible to use non-exact mappings if
the compression is allowed to be destructive.

Figure 1: Self similar regions

During encoding the image is partitioned

into a set of non-overlapping regions, and the
image is searched for a good contractive map-
ping for each of the regions. One way of parti-
tioning a given image is depicted in figure 2. It
is possible to regenerate the original image (or
an approximation thereof in case of non-exact
mappings) from the regions and their associ-
ated mappings and therefore the regions and
the mappings can be used as the representa-
tion of the image. In most cases this represen-
tation will turn out to be much more compact
than the original pixel-based representation.
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Figure 2: Partitioning during encoding

The decoding of a fractal compressed im-
age has its mathematical founding in the con-
tractive mapping fixed point theorem, which is
explained in some detail in [1]. Starting from
some arbitrary image, Iy, the decoding process
iteratively applies the entire set of mappings
found in the compressed representation to the
result of the previous iteration,

meM

where I; is the result of the ith iteration and M
is the set of mappings. The contractive map-
ping fixed point theorem states that if the set
of mappings consists of contractive mappings
then there exists a unique image I, which sat-
isfies
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The decoding process will terminate when this
unique fixed point is obtained. Figure 3 visu-
ally illustrates how decoding works by showing
four intermediate steps from a decoding pro-
cess.

Figure 3: Decoding a compressed image

2 Representation

We partition the image using a quad tree, as
described in [1]. Specifically, each node in the
tree covers some square region of the image. A
non-leaf node always has exactly four children,
covering each of the four squares in the 2 x 2
symmetrical partitioning of the square covered
by their parent. The root of the tree covers the
entire image. Thus, the set of all the leaves of
the tree describes a partition of the image into
non-overlapping regions.

Each leaf contains all parameters for the
mapping that is to represent the region covered
by the leaf. These parameters consist of two
things:

e The affine transform that is to be applied
to the image to transform some part of
it into the region covered by the leaf.

e The contrast and brightness adjustment
that is to be applied to the transformed
image region.

The affine transform is given by six num-
bers (ugy, Udy, U0, Vda, Vdy, Vo) such that the
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Figure 4: Quadtree partitioning

image coordinates (u, v) that contains the pixel
to be transferred to the image region coordi-
nates (z, y) is given by

U= Udg * T+ Udy * Y + Uo
V=7Udg T+ Vay Y+ 0

Note that (ug, vo) is the image coordinates
that transforms to the upper left corner of the
image region.

The actual parameters that describe the
transformation are the image coordinates of
three corners of the parallelogram to be trans-
formed into the image section. If (ug, vg) trans-
forms to the upper left corner, (uj, v1) to the
upper right corner and (ug, v2) to the lower
left corner, and the side length of the region is
[, then the transform is given by

Ude = I~t.

(

udy = l_l . (’U,Q — U())
Vdx = It (
(

Vdy = I~t.

Contractiveness of a transformation is the
property that the distance between any two
points in the image is decreased by the trans-
formation. We define a transformation to be
contractive by a factor of f, provided that all
distances shorten by more than a factor of f by
applying the transformation. Mathematically,
the this is equivalent to all of the following in-
equalities being satisfied,
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Ugy + g, > f*
R, > f?
(e + Udy)2 + (Vde + vdy)2 >2- f2

(udm — udy)2 -+ (de — Udy)2 > 2- f2

The contrast and brightness adjustments
are numbers s and o describing a linear func-
tion on pixel values,

b=s-a+o

where a is the value of the original pixel and
b is the resulting pixel value. This function
is applied to all pixels of the region after the
transformation.

The optimal values for s and o are the val-
ues that minimizes the distance between the
image region contents produced by the map-
ping and the actual contents of that region of
the original image. With the standard mean
square distance measure on images (n being
the number of pixels and all summations im-
plicitly over all pixels),

%Z(a )2

we want to minimize the quantity

%Z(s-a—f—o—b)z

which is achieved by choosing o to be

:Zb—s-Za

n

0
and by choosing s to be

n-y ab—>ad b |
¢ — 7 ifd#0

0 otherwise

where d is defined as

dzn-ZaQ—(Za)2

To actually store the image to a file, we first
decide on valid ranges and number of bits (at
most eight) used to represent the eight map-
ping parameters. The tree is then serialized by
a normal depth-first traversal with the follow-
ing representations:

e Node: One zero byte followed by serial-
ization of leaves.

e Leaf: Eight bytes containing each of the
mapping parameters s, o, ug, vg, (U1 —
uo), (v1 — o), (ug —up), and (ve — vp).
If s is sufficiently small we only store s
and o, since it does not make much dif-
ference which transformation parameters
are used (because the result is almost a
uniformly colored square).

The result is packed with gzip to achieve
good compression. We expect that gzip is able
to make good use of the fact that most of the
time we do not use the full range of the bytes
because of our restrictions on the number of
bits used to represent the parameters.

3 Evolutionary Approach

The search space of the fractal image compres-
sion problem is huge. There exists an incred-
ible number of different representations, and
using evolving representations using an evolu-
tionary algorithm seems like the obvious (al-
beit a bit simple-minded) approach. The pop-
ulation in our model consists of individuals,
which are the representations described in the
previous section.

The evolution of good individuals is clearly
a case of multi-objective optimization. On one
hand we want as good an image quality as pos-
sible, but on the other hand we have to make
sure, that the compression factor remains high.
We use the weighted sum approach, and com-
pute the fitness of a given individual as

fitness = quality + size weight - size

where the quality is the standard mean square
distance measure between the original image
and the approximated image found by decom-
pressing the representation. The size is the
size of the compressed serialized representa-
tion. The goal of our evolutionary algorithm is
to minimize the fitness of the best individual,
without getting stuck in local optima.

To maintain a suitable selection pressure
we use tournament selection with elitism. Us-
ing elitism ensures that the fitness of the best
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individual in the population can never reduce
from one generation to the next, and we have
found (experimentally) that elitism improves
our algorithm.

There are several ways of mutating an indi-
vidual based on a quadtree representation. We
have implemented a mutation operator, which
uses three different mutation schemes:

o Mapping parameters in leaves can be mu-
tated by adding a random vector with
entries from U(—o,0) to the parameter
vector.

e Leaves can be partitioned into nodes with
four sub-leaves.

e Entire sub-trees can be pruned by turn-
ing nodes into leaves.

The crossover operator works by exchang-
ing sub-trees in two different individuals. Two
nodes (one in each individual) representing the
same image region are chosen at random and
exchanged. The result is that the sets of map-
pings that cover the image regions are swapped.

To give an impression of how the evolution
proceeds, figure 5 shows the decompression of
the best fit individual after 5, 20, 50, and 100
generations.

Figure 5: Early steps of evolution

The result of the evolution process (after
1000 generations) is shown in figure 6. It is
interesting to see that the quality has not im-
proved considerably compared to the best fit
individual after 100 generations.

Figure 6: Lena in 3741 bytes

4 Local Search Approach

The evolutionary approach described in sec-
tion 3 is not able to produce leaves with map-
pings of a very high quality. The regions of
the image shown in figure 6 do not have much
texture, which seems to indicate, that the con-
trast setting in the leaves corresponding to the
regions is close to zero and that it is the bright-
ness setting alone, that defines the color of the
individual regions.

To experiment with alternative ways of do-
ing fractal image compression, and to solve
some of the problems inherent in the evolu-
tionary approach, we have designed and imple-
mented an additional compression algorithm,
based on our existing representation. The al-
gorithm described in this section is an iterative
algorithm, which iteratively improves a single
representation using a local search technique.
The improvement process continues until a ter-
mination condition is satisfied.

In the setup phase of the algorithm, the
source image is partitioned into four regions,
which is represented by a node and four leaves.
For each of the four regions, the source image
is searched for a good mapping using a local
search technique described later in this section.
Since this operation optimizes the mappings in
the leaves of the representation, it is referred
to as leaf optimization.

Each iteration tries to improve the overall
quality of the compressed image by improv-
ing the quality of the worst region in the im-
age. The worst region is defined as the region,
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which has the highest product of the square
root of its size and the squared mean distance
to the source image. To improve the quality
of a region, it is partitioned into four smaller
regions. Since the partitioning itself does not
change the compressed image and the quality
thereof, we apply leaf optimization to the four
leaves that represent the new regions. Figure 7
shows eight intermediate images from the early
stages of the compression, thereby illustrating
the partitioning process.

Figure 7: First eight iterations

The user can specify the compression goals
in terms of the maximum allowed size of the
compressed representation, and the minimum
allowed quality of the decompressed image. The
algorithm continues its iterations as long as
both conditions are satisfied. To show how the
settings affect the output we have compressed
the same image as shown in figure 7 with two
different maximum sizes. Figure 8 shows the
results of the compression. Opposed to the size
weight setting of the evolutionary approach,

this is a much more intuitive and understand-
able way of expressing the compression goals.

Figure 8: Effect of maximum size setting

To implement the leaf optimization part of
our algorithm, we decided to use a simple local
search method, commonly referred to as hill-
climbing [5]. Given a leaf with an associated
initial mapping our optimization routine tries
to improve the mapping by randomly tweaking
the mapping parameters. This improvement
process continues until the random tweaking
has not improved the quality of the mapping
for a limited number of consecutive attempts.
The threshold used to limit the number of un-
successful attempts is known as the stamina,
and its setting has a significant impact on the
behavior of the algorithm. Figure 9 shows the
effect of the stamina setting: The leftmost im-
age is the result of decoding an image com-
pressed with a low stamina setting, whereas
the rightmost image has been compressed with
a high stamina setting.

Figure 9: Effect of stamina setting

It is well-known that local search meth-
ods have a tendency of getting stuck in lo-
cal optima. To help alleviate this shortcoming
it would have been possible to use an algo-
rithm based on simulated annealing [5] or tabu
search [5]. Instead we decided to use an iter-
ated version of the hill-climbing method. Each
time the leaf optimization routine is used, the
hill-climbing process is restarted a number of
times; each time with a random initial map-
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ping. The optimized leaf returned by the iter-
ated hill-climbing method is the result of the

iteration that produced the highest quality leaf.

The number of iterations used per leaf opti-
mization is known as the climber count, and
like the setting of the stamina parameter, the
climber count setting has severe implications
on the efficiency of algorithm, and the result-
ing compression factor. To illustrate the effect
of the climber count setting, we have com-
pressed the same image using low and high
climber count settings. The results are shown
in figure 10.

Figure 10: Effect of climber count setting

To get an impression of how the local search
approach compares to the evolutionary approach,

compare figure 11 to figure 6. Both figures
show the same image, but the image in figure
11 has been compressed with the local search
based algorithm described in this section. The
compressed images are roughly the same size,
but the quality of the local search based com-
pression is much better.

Figure 11: Lena in 3800 bytes

5 Conclusions

To illustrate the (lack of) efficiency of the frac-
tal image compression scheme described in this
article, we have compared the local search ap-
proach to standard JPEG compression. Fig-
ure 12 shows the relationship between size and
quality for both compression schemes. As can
be seen from the graphs, JPEG significantly
outperforms our algorithm for high quality com-
pression. For cramming images into really small
files, however, we do a little better than JPEG.

— Local search FIC
103 x_JPEG

0 10000 20000 30000 40000 50000 60000
Size (bytes)

Figure 12: Comparison with JPEG
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Path planning in a 3 dimensional landscape

Guillaume Carré and Guillaume Farret

Abstract— This report describes a genetic
algorithms (GAs) based method which gen-
erate a path planning in a 3 dimensional
landscape. Our approach leads us to a multi-
criterion problem and also to different mod-
els for our pathway. Our program is suit-
able for both off-line and on-line path plan-
ning because of the fast response time by
using this approach and the fact that this
one doesn’t need a continue landscape but
just a discretized one. We first presents the
models and the main ideas of this choices
and then some simulations with 3D gener-
ated landscapes with strange shapes in order
to show that this method can solve tricky
problem. Finally we will see the results of a
multi-criterion problem (Pareto front) and
how this can be sensitive in some special
cases. We finished with possible extensions
for this project.

1 Introduction

Searching a path between two points in a 3D
environment is solving a problem that can be
encountered in a large variety of real applica-
tions. A path planning software in combina-
tion with a GPS system in a car, the design of
a new road constrained by factor like price and
practicability for all type of cars, robot motion
planning (offline if the path is calculated be-
fore any movement or online if the path is cal-
culated in real time during the deplacement).

We have used evolutionary computation tech-

niques to solve this problem which can be very
tricky with a more classical approach. We have
looked at some papers in this domain [2], [1]
more to get a way of working on this prob-
lem than getting ideas. We first thought about
two different representation which will be re-
ferred as the discrete representation and the
CheckPoint List. The first goal that we set
for this project was to design efficient opera-
tors to tackle our modelisation of the problem.
Then we have designed some problems to ver-
ify the diverse behaviour of our algorithm. A
not negligeable part of our project was also to

find a good way to visualise the results of our
algorithm and we figure out that some of the
behaviour of our implementation were wrong
while we thought to get good results. The
third part was to test, analyse the results of the
program and develop new idea to improve re-
sults. Then we discuss about further improve-
ment and thing that we could have done if we
had more time.

2 Preliminaries

Assume that path planning is considered to
be a problem bounded in a rectangular space.
The landscape is modelled with a discrete grid
where each intersection point on this grid get
some informations (height or others for a road
building, presence of trees, kind of rocks...). A
path between two locations is a way from a
start point and a destination point: we sup-
pose that the discretisation of the landscape is
fine enough to say that the linear approxima-
tion between two adjacent points on the grid
is a good approximation of the real shape of
the landscape.

2.1 Path planning Problem

Problem: Find a pathway representation that
link a start point S to a destination one D on
the defined landscape.

Input: A m by n grid, S and D. These points
are given by there coordinates in the landscape
constraint.

Output: A pathway from S to D which opti-
mise the given problem, this pathway depends
of the model used to find it. It can be a se-
quence of adjacent points, a sequence of vec-
tors with the direction and the size of this one,
a sequence points which define a broken line or
whatever. The only requirement is that we can
plot the pathway on the 3D surface.
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3 Models and genetical oper-
ators

The choice of the the models have to be lead
by two questions:

e [s it a good one for the evaluation of the
fitness ?
i.e.: Can we easily know if this path is
good or not.

e Will the genetical operations that we can
implement be efficient ?
i.e.: Our design fit well or not the way
that the GAs works.

So, we modelled this problem in two differ-
ent ways:

e The first one, (called discretisation in the
gene) obviously optimise the first crite-
rion 12 and we hope that with few ad-
ditional works the second criterion could
be realized.

e The second, (called checkpoint list) focus
the modelisation around simple genetical
operators in order to stay with a classi-
cal genetic algorithm that we know will
work.

3.1 1% representation :
Discretisation in the Gene

This representation use the frame of the Stan-
dard GA with a tournament selection of size
2 and normal operator. Let’s describe more
accuratly this first model.

data representation :

The path is discretized all along the gene, so a
chromosome is a sequence of adjacent points.
For doing this, we look for intersection points
of the grid which are the nearest from the line
at every crossing point.

By doing this, we won’t need any special

computation to calculate the fitness of the gene.

The risk is that the size of the gene could easily
quickly grow up. This induce a lot of compu-
tation for the manipulation of this gene.

2the discretisation is done before the evaluation of
the fitness, that save a lot of computation during the
evaluation of an Individual.

Figure 1:

mutation operation :

@ @

When a point has to be mutated, this mu-
tation is done with a radius between 0 and a
maximum along X and Y. In the same time we
have to delete several points before and after
the mutated one, in order to avoid to obtain
tortuous pathway.

This operator introduce a new parameter: (Ra-
diusX,RadiusY) and also another problem. We
have to try different heuristics to calculate the
number of points to delete: a constant num-
ber, \/mutation X2 + mutation Y2, Max( mu-
tationX, mutationY )... and maybe the opti-
mal heuristic is function of the kind of problem
that we have to solve. We are also not sure
that this operator allow a good exploration of
the search space and if does not lead every
time to bad pathway that are more likely to
be eliminated. So, with this model, the time
of tuning will be longer for a classical GA.

crossover operation :

The crossover operation is quite simple: once
a chromosome has to have a crossing over, a
random point is chosen inside the chromosome
and we link this path from this point to the
other path at the nearest point. The gener-
ated offspring is the resultant path: the first
part of the chromosome of the first parent and
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@ &

the second part of the chromosome of the sec-
ond parent.

first parent: [p1, pa, p3, p4]

second parent: [q1, g2, ¢3, ¢4, 95, 96, 47]
random split point: p3

if min(ps, ¢;) is for i = 6 then:
generated offspring: [p1, pa,ps, g6, 47]

Here again, we have to pay attention to the
distance that we use to calculate the closest
point in the second parent (once the first split
point has been chosen in the first parent). This
distance can be of different type since we are on
a discretized landscape. We can use the Eu-
clidean distance, the Manhattan distance '3,
the fitness function or other to decide where
we have to join the two paths.

shrinking operator :

The two last operators (mutation & crossover)
introduced quite a lot of points into our chro-
mosomes. Such a number of points became a
back draw after several computations because
it introduce a lot of noise which conduct to
a lot of inefficient pathway like loop or unex-
pected bad directions. The high number of
points due to the modelisation increase this
noise and reduce the efficiency of the GA. In
order to get ride of this, we created another
operator called shrinking.

& @

13The distance between two points measured along
axes at right angles. (also called rectilinear distance)

This one works like this: a point is ran-
domly chosen in the chromosome, then this
and several around him in the chromosome are
deleted, finally the path is redrawn by linking
the remaining points.

Individual: [q17 42,43, 94, 95, 46, Q7]
random delete point: g3

delete radius: 1

shrinked Individual: [¢1, g5, g6, 7]

The motivation for this representation was that
the ”whole” search space seems to be quite eas-
ily reached with this. The path can do some
little curves and the fitness will be easy to com-
pute because of the discretisation is already
done.

The problem is that we don’t know if a GA
works well or not on such problems. Most of
the times, a lot of specificity have to be create
when a representation is too far from a stan-
dard problem.

In order to check if this supposition was
good, we did another model, really lighter but
certainly less able to map the entire search
space.

3.2 2" representation:
The CheckPoint List

The second model follow also the frame of a
classical GA with a steady state selection and
based on multi objectives fitness attribution.

data representation :

&

AC}///

With this model, the pathway is only the
points which define the broken line. In this
example this is [a,b,c]. This model is really
smaller than the first one, but some compu-
tation will have to be done during the run to
calculate the fitness (discretisation according
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to a predefined sample rate to evaluate dis-
tance on the landscape for example).

We tried to write some operations that won’t
add a lot of point into the chromosomes. By
doing this, we hope that we won’t need some
special operations like the shrinking operator.
Let’s see the mutation and the crossover oper-
ation:

mutation operation :

OC C\C

i

A
(G=—""

This mutation only move locally a point
(or a list of consecutive points) of the path.
This local move is constrained by a mutation
radius which avoid the pathway to change to
much. This new parameter is the more likely
to be controlled by a power law (Sand Pile
for example) to allow most of the time normal
mutation and sometimes hyper mutation.

crossover operation :

& R

e »
Nl N
& S)

A point of the path is selected at random
in the first parent and we look for the nearest
point in the other parent. Then, we link the
two paths.

If there is really a lack of point into our
chromosomes. We could try to write another
crossover and mutation operations that could
add some points. And then, using randomly
both operators according to a given probabil-
ity. With this kind of method, we could avoid
potential reefs of this model.

4 The fitness function

A special fitness function

e Discrete representation
For each step the gradient is computed
and a function g is applied

fitness(z) = Zfﬁg g(gradient;) note 4

If we want to insist on the length, we
have to write a function g which will pe-
nalise a high gradient. On the other hand,
a function with a little penalisation will
be a shortest path in order to minimise
the number of terms in the sum.

e The checkpoint list representation
During the evaluation, two values are cal-
culated for each gene :

the height = ) |height climb|

Adiscrete

the length = total plane distance of the
pathway.

(sum of euclidian distance between Check-
Points of the pathway).

Then, the fitness is the distance shown
on this figure:

Lenght

A

’

Then, we use this two values according to
weights in order to find some solution which in-
sist on one or the other criterion. This method
is really common for the multi-criterion func-
tion.

the gradient is the difference of height over the
plane distance between two points.
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5 Experiments

5.1 Introduction to the experiments

We do not show graphical results for the dis-
cretisation in the gene implementation with
both of the problem because this method gave
us too poor pathway.

There are several reasons:

e too static representation: the pathway is
very ”heavy to move” because of the too
high number of points.

e too much induced computation: this method
was very long too compute the genetic
operation (crossover, mutation).

e inefficient operator: mutation operator
and crossover lead to unexpected results
due too the noise in the pathway.

e too much parameter control induced.

We focused our experimentation on the re-
sults of the ” CheckPoint list” implementation.
To do so we designed two problems to check
some behaviours of this method.

5.2 The first problem

The first problem is defined as following:

landscape equation : z = sin(z)2sin(y)?
xrange = [—2m+ 1;27 — 1]
yrange = [—2m; 27|
start point :  (4.2,6.2)
end point (—3,-3.2)

sinfe) "2 sy " ——

Figure 2: the bottle problem

This problem produce a landscape with high
mountains that have to be avoided in order to
minimise the ’difficulty’ of the pathway. This
problem is referenced after as the bottles prob-
lem.

The problem was too find a good compro-
mise between ”difficulty” and length of the
pathway.

T o B TS

We can see that after a short number of
generation, the algorithm has already found a
few good solutions. The best solution is ob-
tained after 40-50 generations. To find this
solution we had to increase the weight for the
length (for the weighted sum in the fitness). If
we decrease this weight we obtain more angu-
lar pathway, with most of the time only one
change of direction. The algo follows the first
valley and directly goes to the goal when it’s
possible. Increasing the weight for the length
leads to pathway that partially cross the moun-
tain if this ”cross” is not too difficult.

5.3 The second problem

The second problem is defined as following;:

landscape equation :
z = sin(10z)3sin(y)® — sin(10z +2)sin(y +2)3

xrange = [—0.2;—0.02]
yrange = [0;6.2]
start point  :  (—0.018,0.3)
end point : (—0.18,6)

This problem is interesting because it provide
us a mean to test our algorithm on a landscape
with a huge local optimum for the optimisa-
tion of the landscape "difficulty”. It will be
referenced after as the zig-zag problem.
Here the problem was to find a good solu-
tion without a minimum length and that follow
the less difficult steeple. Typically this prob-
lem could be the one encountered in the design
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100sin(10°x)**3"sin(y)**3-100"sin(10°x+2)"sin(y+2)""3

Figure 3: the zig-zag problem

of a road in a hilly landscape. We can see that
the pathway follow exactly the best valleys to
get to the goal. At the 20" generation some
pathway still cross the first mountain but the
majority of the solution has already found the
large zigzag. The further improvement of the
path way are done in the beginning (downer
right corner) to find the first little zigzag.
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5.4 Multi objective optimisation

One of the problem when we first try to tackle
this problem with a simple EA was to define a
good fitness function. We first try to penalise
the total height climbed with some function
fitness = elgradient] byt we could not get good
results on different kind of problems.

This kind of problem is likely to be solve with
multi objectives optimisation because most of

the time the maximum for both objectives (length

& height) cannot be fulfilled. We often search
for a good compromise between this two ob-
jectives.

We have computed this Pareto front di-
rectly from our representation. It has been
obtained by running the program a ”lot” of

time with the vector (wheight; Wiengtn) chosen
at random to explore the whole front.

T T
parebifedt’

Figure 4: the pareto front on the first problem

We can observe that there are a very high
density of points for couple of vector that are
either favouring the length or the height of the
pathway. It means that its quite easy to find a
good solution if we want to insist on one of the
two criterions. The bottle problem has been
used to compute this pareto front.In the up-
per left corner, we can see solutions with a long
pathway and a very easy difficulty and in the
downer right corner solutions with a straight
line from the start to the destination. The
problem with this representation is that we
don’t have normalised the weight of the two
criterions. It would have been interesting to
have a good repartition of the point among the
two axis to have a better interpretation. This
could have been done for example in resam-
pling non continuously both axis according to
the number of points in a partition of the two
axis. For example we could have done a par-
tition of the solution space (Zweight; Yiength) O
the X axis and count for each part how many
point there are inside and then increase the
size of this part.

5.5 Conclusions on the experiments

With this two problems, we could see if our
algorithms were efficient with some obstacles,
like hills or mountains, that induce a lot of
local optimum. The tests also allowed us to
see the weakness of the discrete model. Such
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results were quite hard to guess before, these
tests lead us to think about the real behaviour
of our algorithm.

An interesting result is the speed of our GA.
On a grid of 40x40 (about 3 times larger than
in the other papers), the time of computation
was really short. After 30 generations of a pop-
ulation of 100 individuals we get approxima-
tively our best result. This characteristic can
maybe give some ideas for an on line planning.

6 What we could do if we had
more time ...

This project and modelisation took quite a
long time. And, before doing some funny stuff
or improvement we preferred to validate our
model on some problems as the two that we
shown. By the way, we got a lot of ideas with
this algorithm, this are several things that we
thought about :

e As you can see on the last example, the
diversity of the population is quite quickly
lost. After only 30 generations, most of
the population is reduced to 4 different
individuals. A probably good improve-
ment would be to use an heuristic to keep
the diversity of the population without
having a decrease of the performance of
the genetic algorithms.

e Another improvement should be to add
some others genetic operations in order
to add more point into the chromosomes.
We could use both operators randomly
according to probability. Maybe with
this kind of improvements, we could be
able to find some results with really tricky
problems (laces in a mountain).

e We could introduce a third criterion in
order to design some specific problems:
cost of digging a road on some special
rocks, cost of cutting trees, cost of the
fields ... With this stuff, we could test
our algorithm on a real problem which is
the road planning in a mountain.

e We could do a real time system. The al-
gorithm is able to re-compute very quickly
a new optimal pathway and could be able

to react at a change of the landscape.
For example, a robot that can’t in fact
follow the first computed path because
of a weakness of one of his wheel or if
the landscape change (sand dune in the
desert).

7 Conclusions

This paper proposed two different ways to pro-
gram path planning with genetic algorithms
and their results. We saw a huge difference of
results, the first model leads to poor results
and the second to some good. After this expe-
rience, our belief is that when you try to model
a problem for a genetic algorithm the leading
idea must be the simplicity of the representa-
tion in order to stay in the well know behaviour
of the GAs. The various length of our repre-
sentations led the first one to a failure but not
for the second one because we were able to
maintain a reasonable number of points.

By doing this, we were able to use our GA
with no X or Y monotone problems in opposi-
tion of the paper [2] in which one the writers
preferred to use a fixed-length strings. So our
GA is more able to find an optimal path off-
line and can also be use to find some motion
planning but will be less efficient than the spe-
cial design model.

The multi-criterion approach is good way
to make our algorithm adaptif to a lot of differ-
ent problems. This nonspecialization, accord-
ing to our opinion, guarantees safety and leaves
presager for many applications with such an
algorithm.
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Forking Particle Swarm Optimisation

Christian Gasser, Kasper S. Jensen, and Kari S. Schougaard

Abstract— We have combined the forking
GA model and the basic PSO model into
a model which we have named the forking
PSO model. So far our empirical tests show
our model to be inferior to the basic PSO on
most functions . This article will in detail
explain what we have done so far and what
needs to be done. It is still our firm belief
that this model will beat both the forking
GA and the PSO on complex functions.

1 Introduction

In 1997 Tsutsui, S., Fujimoto, Y., and Ghosh,
A. proposed the idea of a forking GA [4]. The
basic search method of the forking GA is the
standard GA. The standard EA will examine
the search space as usual, but whenever it finds
an interesting area in the search space and con-
verges in the area, it forks a child-population.
The child-population will now search the inter-
esting area, while the parent-population will
continue searching for other interesting areas.
Child-populations themselves can fork and the
nesting depth can be arbitrarily high.

Tsutsui et al. showed empirically that the
forking GA is superior to the standard GA on
complex function optimisation problems. The
standard EA often converges on a local opti-
mum. The genes of an individual sitting on
a local hill will spread rapidly throughout the
population and you will get a population with
a very low diversity - poorly equipped to ex-
plore the search space for even better solutions.
The forking algorithm keeps the diversity high
throughout the run and is thus less prone to
ending up in a local optimum. Another great
advantage is the ease with which it can be dis-
tributed and run concurrently. Each subpop-
ulation can be seen as an almost independent
unit, which can run isolated with very little in-
teraction with the other subpopulations. The
disadvantage is of course the use of standard
GA’s in the populations. These require a rela-
tively high number of individuals in each pop-
ulation and thus many fitness evaluations.

Another approach to finding good solutions
for multi-modal problems is the Particle Swarm
Optimisation technique. This model was intro-
duced in 1995 by Kennedy [2]. The strength
of the basic PSO is finding good solutions with
very few fitness evaluations. This is achieved
using a low number of particles, which fly around
in the search space. Each particle remembers
the best solution it has found so far. In ad-
dition it has knowledge of the best solution
found by any particle. All the particles are
then attracted to their own best solution and
the global best solution. This gives them an
acceleration- and a velocity-vector, which will
make the particles move around the search land-
scape and converge on the best found solution.
The basic PSO finds good solutions very fast,
but the downside is that it can be trapped very
easily on a local optimum.

Greatly inspired by Lovbjerg et al. [3] and
their success in making a hybrid between a
standard GA and a PSO we have tried to com-
bine the good results from the forking GA with
the low number of fitness evaluations from the
basic PSO in a model we call Forking Particle
Swarm Optimisation.

2 Forking PSO

In short our model works as a phenotypic fork-
ing GA, where the GA has been replaced by a
basic PSO. On top of that we have introduced
a queen, which spawns the initial swarm and
which keeps control of how many resources are
used in which areas. Our algorithm can be
outlined as:

spawn (parents)
while(evaluations<maxEvaluations) {
calculate which swarms is gonna fly
for each swarm which is gonna fly {
evaluate fitness
if swarm has converged {
spawn childswarm
reinit parents outside this area
}

if childswarms has converged {
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merge chilswarms

calculate velocities
move swarm

X
calculate new priorities

¥

Where one loop in the whileloop is called
a turn and there are many evaluations in one
turn.

In the rest of this section we will describe
our forking rules, boundary considerations and
resource allocation.

2.1 Velocity update

Our model uses particles with certain positions
in the search-space and a velocity-vector giving
the particle’s direction. As in the PSO model
Kennedy presented in [1] the particles is in-
serted randomly in the search-space and with
a random velocity-vector when the swarm is
created.

The velocity of a particle is then calculated
on basis of the current velocity with a stochas-
tic correction in the direction of the best po-
sition this particle saw and the best position
seen by any particle in the swarm:

U U +o1(pr — Ti) + p2(pg — T7)

where @1 and o are random numbers defined
by their upper limit (usually 2.0). The index g
is the index of the particle in the swarm with
the best performance so far, so that p, is the
best vector found by any particle in the swarm.

After teh velocity has been calculated the
position is updates as follows:

— — —
Ti <— Xj + U5

2.2 Forking rules

Tsutsui et al. [4] base their forking rules for
the phenotypic forking algorithm upon what
they call a hypercube neighbourhood. When
a certain percentage of a population is within
a hypercube centred around the position of
the individual with the best fitness, forking
will occur. The exploration of this neighbour-
hood will then be left to the child-population.

In our terminology hypercube neighbourhoods
are called areas. We examine the area around
the best position a swarm ever saw, as this
point is the one all particles in the swarm are
attracted to. The current position of the par-
ticle that found the position can be somewhat
different from this.

When to fork

Two criterias has to be met for a swarm to
fork.

1. Over a certain treshold of the particles
have to be inside a hypercube around
the best position ever seen by the swarm.
How the size of the hypercube is deter-
mined is explained in the next subsec-
tion.

2. The best value this swarm ever saw may
not have been updated for some time -
for example not for 20 times in a row.

Both of these criterias is used by Tsutsui et al.
[4]. We use a larger value for the second crite-
ria than proposed in the article. As a particle
can stumble on a very good spot but have a
good speed in some direction it will need some
time to turn around and come back to look
in this fine area. This means that often when
the best value is changed, some time will elaps
before we get a new change.

Threshold for forking and area-sizes

We define two parameters which controls the
forking. The first parameter defines how many
percent of a swarm has to be inside a given area
before forking occur. That is 0.5 < Kpg <1
where Krpg is the threshold parameter. The
second parameter defines the size of a child-
area compared to the parent-area. You could
for example define this parameter to be 16
which means the childareasize will be 1/16%"
the size of the parent-area. If the children
spawn some children themselves, the new area
will be 1/256%" the size of the original parent-
area and so on.

Keep child-areas inside boundary

When forking occurs there will be special cases
which require special treatment. In particular
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Figure 1: When creating a new area it can be
out of bounds so it must be moved back in.

you will have to handle merging and overlap-
ping. In the following we will explain how we
handled these special cases.

Assume a swarm has converged near the
border of its area. Now creating a child-area
here will exceed the limits of its parent-area,
(see figure 1). We have decided to move the
borders of the child-area inside the parent-area.
Alternatively you could just make the child-
area smaller in which case you would have to
consider how many resources you invest in that

area.
Another special case you have to consider is

when you want to create a new child-area, that
will overlap with an existing child-area. Our
solution allow areas to overlap. We have cho-
sen this solution despite the obvious disadvan-
tage of having two or more swarms searching
the same search space. Firstly we give swarms
a priority, which means they are allowed more
evaluations if they have found an interesting
area. Secondly if we have found a good area
we don’t mind using extra resources (two or
more swarms) searching that area. This of
course implies the necessity of a good priority-
scheme. If two areas overlap a hypercube (of
same size as the areas for the two swarms)
which is placed with centre in the best particle
in one of the swarms. If the hypercube contain
more than the forking threshold of particles
from both swarms the best of the particles in
the swarms are transferred to a merged swarm
in the new area (see fig. 2). Thus if a opti-
mum is placed inside the areas of to different
sibling swarms and both swarms converge on
this optimum the swarms are merged.

2.3 Boundary rules

We think of child-areas as holes in the parent-
areas. It is forbidden for parents to go into a

Figure 2: If two areas overlap and particles
from both swarms converge. The existing ar-
eas are discarded and a new is created keeping
the best of the particles from both swarms.

S

-

Figure 3: A particle cannot enter a forbidden
area and if it tries it is transfered to the other
side of the area.

child-area and a child has to stay in its own
area. In the following we will explain what
we do when a particle tries to go out of its
boundaries.

When a swarm spawns a childswarm, the
childswarm will be restricted to the area in
which it was created and for the parents it
will be a forbidden area. It can happen that
a parent-particles velocity-vector will make it
end up in a forbidden area. In this case we
simply prolong the velocity-vector such that
the particle end up on the border in that di-
rection on the other side of the forbidden area,
(see figure 3). This way we don’t run the risk
of trapping particles on a border of an area
opposite of where it is attracted to, (see fig-
ure 4). When a particle tries to go beyond
the boundaries of its area we move it to the
nearest boundary and set it’s velocity to zero.
Now setting a particle’s velocity to zero means
that the next velocity it will receive will only
be computed based on the solutions it is at-
tracted to.

2.4 Resource allocation

The cornerstone in our model is the resource
allocation. The goal is to obtain as good re-
sults as possible using the least possible fitness
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Figure 4: If the particle aren’t transfered to
the other side of the area it could still be at-
tracted to a particle on the other side, thus
getting trapped.

evaluations. To this end we work with suspen-
sion and priorities of swarms.

We have introduced a Queen to the particle
model. The Queens task is to spawn the first
swarm and keep an eye on how well each swarm
is doing. If a swarm is doing well she should
add more resources to that swarm. On the
other hand, if a swarm is doing bad it should
have less resources. There are two ways the
resources can be controlled. An area can either
get more particles or the particles in that area
run more often. In this article we concentrate
on the latter, which we call suspension.

To have a swarm evaluate more or less fre-
quently than another swarm requires some kind
of prioritising. Therefore we let the Queen con-
trol a priority-scheme. When a swarm forks,
both the childswarm and the parent-swarm will
get priority 0 meaning their particles are evalu-
ated every turn. If a swarm is doing bad it will
go down in the priority-scheme. The priorities
correspond to exponentially decreasing num-
ber of evaluations such that priority i means
evaluation every 2°th turn. Priority 8 is the
lowest possible priority. This way we ensure
that no area is completely discarded.

The best and worst values for all the swarms
that flew in this turn is recorded. Now the
queen prioritizes the swarms that flew in this
turn: A swarm is evaluated after the following
criterias. The middlevalue of the bestposition
ever seen by this swarm and the best position
obtained in this round by this swarm is com-
pared to the best of the best and the worst af
the best for all the swarms that flew in this
turn. If the value is close to the best of the
best the swarm gets into a better place in the
queue, if it is close to the worst of the best the

swarm is moved downwards in the queue.

3 Experiments

We started out with an implementation of a
simple PSO that ran on four well known prob-
lems. The Sphere, Griewank, Rosenbrock and
Rastrigin as described by Lgvbjerg [3]. In or-
der to compare the forking PSO to the ba-
sic model we ran our experiments on the same
problems.

3.1 Tuning of parameters

The FPSO algorithm is dependent on a num-
ber of parameters, which greatly influence its
behaviour. We have optimized these parame-
ters using a standard GA. We found the fol-
lowing values to be optimal for each function:

Parameters Sphere Griewank Rosenbrock Rastrigin
Swarmsize 18 14-16 12-13 15-17
Stagnation 22 10-20 15 15-20
Phi 1.03 1.75-1.9 1.8-1.9 1.9-2.2
‘Weight 0.92 0.65-0.75 0.65-0.75 0.3/0.6-0.7
Max velocity 0.16 0.1/0.4 0.1-0.2 0.17/0.35
Threshold 0.95 0.75-0.95 0.75-0.9 0.9-1.0
Areasize 23 60 50-60 26/45-60

3.2 Testfunctions

To compare the models we focused on aver-
age best values measured at regular intervals.
In contrast to the basic model and due to the
priority-scheme the forking PSO lacks the no-
tion of generations, instead we counted the
number of fitness evaluations.

For some time we considered defining a di-
versity measure that could be compared, but
gave up as we did not think it would be pos-
sible to devise a fair measure for the forking
PSO - again due to the priority-scheme, where
different swarms are run at differing intervals.

All our runs were conducted for ten dimen-
sional problems, in each case the average is
taken over fifty runs. As seen in the accompa-
nying figures the fpso only performs better for
the rosenbrock function.
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Figure 7: Results for the Rosenbrock function

Figure 8: Results for the Rastrigin function

4 Results

4.1 Tuning of parameters

As can be seen from the results the same pa-
rameterset works well on all the testfunctions.
We have found the following values: swarmsize
15, stagnation 15, phi 1.9, weight 0.7, max ve-
locity 0.1, threshold 0.9 and areasize 60. Note,
however, that small changes in the parame-
ters can improve the results so for best results,
please refer to 3.1

4.2 Testfunctions

As can be seen from the experiments the fork-
ing PSO converges more slowly than the ba-
sic PSO. In the case of the Rosenbrock func-
tion we see a remarkable staircase pattern. We
haven’t had time to explore this pattern fur-
ther, but it is this staircase pattern we had
hoped for on all the functions. In particular it
could be interesting to see if the stairs begin
whenever forking occur. The forking PSO run
particularily bad on the Rastrigin function.

5 Conclusions

So far our algorithm are not doing well enough
for most testfunctions. There are still alot of
improvements which can be made and we think
that the forking PSO will eventually be supe-
rior to the forking GA and the basic PSO.

6 Future Work

Since we did not beat the regular PSO with our
implementation of a FPSO there is certainly
room for improvement. The main difficulty in
implementing a FPSO clearly lies in the dis-
tribution of resources, that is by resources we
mean the number of all-in-all fitness evalua-
tions.

Two different approaches come to mind,
either one could improve the priority scheme
used now or one could devise a new scheme
that does not rule how often each swarm runs
but instead distributes resources in a completely
different way.

To improve the priority scheme different
approaches are thinkable on how swarms get
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their priorities increased or decreased. In our

current model the priority for a particular swarm

is altered based on how it performed compared
to the other swarms in the same priority class.
Instead or additionally we could base the deci-
sions on whether the swarm has been stagnat-
ing for a long period or has subsequently been
getting better for some time - experiments in
that direction actually seemed promising.

When using the priority scheme it is of ut-
most importance to keep the number of swarms
with high priorities low. Different measures to
ensure this should be considered more thor-
oughly. In our FPSO model we only fork after
a swarm has been stagnating, merge swarms if
they search the nearly the same area and limit
the number of forking levels - other rules are
thinkable.

Since the priority scheme approach has proven

to be hard to control we could try to imple-
ment other schemes. One idea focuses on lim-
iting the number of particles, that is when a
swarm wants to fork off a new swarm it re-
quests particles from a controller which in re-
turn takes particles from the swarms doing
worst - in this case a swarm would be aban-
doned when it contains less than some number
of particles.

Another idea we had limits the number
of swarms - and thus also particles. In this
scheme forking is only possible if the limit of
swarms has not been reached or when another
swarm is destroyed at the same time.

In this scheme like in all the others there
is some form of controller - we believe that the
main difficulty in implementing a FPSO is to
find suitable rules for these controllers.

7 Conclusions
8 Future work
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Evolving a mill player

Simon Nejmann, Kasper Fauerby, Mads Olesen, and Carsten Kjeer

Abstract— In this paper we describe our
attempts to evolve a mill player, using an EA
and a hill climber to train the weights of a
neural network. The neural network is used
to assign a quality measure to the different
board states and thus allow the computer to
decide on a move to make from a given state.
The result is a fairly good mill player but
unfortunately we experience a stagnation at
the trivial all-ones network. Finally possible
reasons for this stagnation are discussed.

1 Introduction

A problem with having computers play turn-
based games like chess, checkers, mill etc. is
that the games are so complex that it is not
possible to calculate a complete tree of all pos-
sible game states. If we could do that we could
always deterministically look up the best pos-
sible move for the computer, given any game
situation, which would lead it towards a win
situation. Since this is impossible, an approach
is to build a part of such a tree, looking a num-
ber of steps ahead from a given state. For the
computer to be able to choose which move to
make it must be able to assign a quality to each
possible game state. This quality measure can
either be calculated using certain hard-coded
heuristics about how the game is best played
- or we can try to let the computer figure out
those heuristics by itself.

Inspired by the work in [2] and [1] in which
they used an EA for finding these heuristics for
the game checkers we wanted to test if a similar
approach could be used for playing mill.

2 Abstract model

In this section we introduce the game of mill
and give a short high-level description of our
implementation of the game mechanics. We
then move on to describe the way we have
made a parameterized computer-player and fi-
nally we describe how we use an EA to try to
find a good parameter setting for such a player.

2.1 The game of mill

Figure 1: The mill board.

In 1 the mill board is depicted - the 24
places where lines meet is where pieces can be
placed. Each player starts with 9 pieces and
the game proceeds turnwise in 3 stages:

1. Insertion of pieces. The players selects
any empty place on the board and insert
one of their remaining pieces. Pieces al-
ready on the board cannot be moved.

2. Moving of pieces. The players select one
of their own pieces and moves it to a non-
occupied neighbour place along the lines
of the board.

3. Jumping of pieces. Once a player has
only 3 pieces left he can move them not
only to neighbour places but to any avail-
able place on the board.

During any of the stages a player gets a mill
if his pieces occupy all three places of a line.
When a player gets a mill he is allowed to re-
move any one of the opponents pieces from the
board. The game ends when a player is unable
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to make a mill i.e. when he has less than three
pieces left. A player can also lose if he cannot
make a move.

We have made an implementation of these
rules where we use an array of size 24 to repre-
sent the board-state. An entry with -1 in this
array represents a place occupied by an enemy
piece, whereas 0 means empty and +1 means
occupied by one of our pieces. We then have a
method that given a board-state A calculates
the set of board-states that can follow A after
a single legal move. When the computer has
to move it will first calculate this set and then
select the best move from it.

2.2 A computerized player

We used a standard feedforward fully-connected
neural network to evaluate a boardstate. In
our first implementation the input layer had
24 neurons connected directly to the array rep-
resenting the board (as described above). The
output-layer always has a single neuron and
we use its output directly as the quality of the
boardstate. It is possible to use such a neural
network to decide between all the legal moves
from the current state. However this would
require the neural network to be very good at
judging the quality of a board and therefore we
help it by looking a certain number of moves
ahead. This is done by generating all the pos-
sible states that can be reached from the cur-
rent in lookahead depth number of steps. We
can then use a standard mini-maz algorithm
[3](pp. 197-202) to find the best move.

We tried this implementation with a sim-
ple handcoded neural network (allOnes - de-
scribed below) and found that it was very time-
consuming even with a lookahead depth of only
5. Instead of the minimax algorithm we then
implemented an alpha-beta algorithm [3](pp.
202-208). This algorithm is a lot faster and we
can now use a lookahead depth of 7 when play-
ing against it (when evolving we typically used
a value of 5). There are a lot of even better
algorithms but implementing these is future
work.

2.3 Finding a good player

The player described above is parameterized
by the weights of its neural network. We can

therefore see such a player as an individual
where the weights is the genes. We have con-
structed a standard evolutionary algorithm with
these configurations:

e Crossover is random weighted arithmetic
crossover between two parents.

e Mutation is a run over all the weights
where there is a probability p that we
add a number. This number is sampled
every time from a random gaussian dis-
tribution with mean 0 and deviation d.
p and d are parameters to the EA.

e Selection is tournament selection where
we have tried both 2 and 4 competitors.

We have also constructed a simple hill-climber
algorithm as described below.

Since there is no rating scheme in mill (like
in chess f.ex.) we were unable to come up with
anything that could describe the fitness of an
individual. The only thing we can do is to com-
pare the fitness of two individuals by letting
them play against each other. This introduces
some problems in our search for a good player.
First it makes it difficult to tell if a search is
making progress at all and secondly the seem-
ingly simple task of finding the best individual
in a generation requires that we let all play-
ers play against all the other players. Since
this would require playing n * (n — 1) games
(where n is the population size) it is not feasi-
ble. We therefore play a tournament where we
in each iteration half the number of contestants
by letting number one and number two play
and letting the winner proceed to next itera-
tion, then number three and number four and
so on. When there is only one player left we
stop the iteration and selects this player as the
best individual. This requires only n * loga(n)
games and ensures that the winner can beat
all others through a string of length loga(n).

24 GUI

To easily see how a network performs we made
a program that allowed us to play against any
of the evolved players. It has a graphical dis-
play and mouse input as seen in figure 2. This
program is written in Java and can be down-
loaded from:
www.daimi.au.dk/"carsten/Mill.tar.gz.
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Click where you want to insert your piece

Figure 2: GUL

3 Experimental setup

In our experiments we had problems with not

being able to see in reasonable time if our changes

had any effect, and if they were bugfree, thus
we were forced to make a compromise between
lookahead and population size. We judged that
a high lookahead was more important and thus
we chose to have the small population size of
only 25 individuals and maintain it at that
level, while using all gains from speed opti-
mizations to increase the lookahead size.

We have mostly had the same crossover
and mutation rate all the way through the ex-
periments, while we have tried a few different
ways of controlling mutation power - both with
a fixed power and a decreasing power of the
type
initialpower/generation. In the hillclimber
discussed below we even tried to have a fixed
power for z generations and then slowly de-
crease it like described above.

As written above, we did our evolution with
a population size of 25 but we also tried to
make a kind of hillclimber by reducing the pop-

ulation to just one individual, stopping crossover

(dosn’t make sense with just one individual)
and instead we spawn a copy, mutate it, let
copy and original compete and keep winner.
The idea is that a mutation will give us a
neighbour to the current player and by let-
ting the two compete we can decide if we are
approaching a local optima or looking in the
wrong direction.

We also tried to use a few different neural
networks for both the evolution and the hill-
climber:

e The first neural network we made had

three layers of size 24-8-1, and just used
the 24 different board positions as in-
puts. After tests we came to believe that
this was too simple though.

e To compensate for this we made the sec-
ond network with four layers (size 24-
24-10-1). But when this gave us much
slower computations, the net were too
large, and not better results we thought
about using a different strategy.

e We did stay with four layers (size 36-24-
10-1) in our third neural network and we
even added 12 extra inputs (sums of the
12 possible millpositions on the board) in
the hope that this could give the extra it
needed to develope a good player. How-
ever computation time went up with the
extra inputs and the evaluations became
unacceptable slow.

e Thus in our fourth network we retained
the extra input but cut the network down
to three layers again (size 36-36-1) hop-
ing that the reduced size would give a
boost to speed while still retaining the
complexity to express how to evaluate a
mill board.

As a final note: We wrote the best player to
disk every fifth generation when evolving while
the hillclimber wrote the survivor to disk ev-
ery generation. This allowed us to keep a his-
tory of how the networks evolved, and compare
them over time to see if they got better.

4 Results

Through the numerous evolutionary and hill
climbing runs, the results have not been sat-
isfying. Firstly the players do not get strictly
better. Usually, if you let subsequent genera-
tions compete against each other, the results
do not show the later generations strictly bet-
ter than the earlier. It can even appear to be
random at times. This was what led to our im-
plementation of tournement selection of size 4,
in an attempt to increase the selection pres-
sure. The increased selection pressure did not
make a difference though, and we suspect that
it is our “findBest” function, which tries to find
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and save the best network in the population,
that is inadequate, since this would show the
same kind of behavior.

Secondly the evolved networks have never
really been able to match the trivial neural net-
work with all weights set to one. This might
seem fatal, but one must keep in mind that
this trivial network, based on our specific im-
plementation of the neural network, in essence
evaluates a board from the number of pieces on
each side only. Thus the trivial network sim-
ply tries to take out as many opponent pieces
as possible, while retaining as many of its own
pieces as possible .

This allOnesPlayer with a decent ply is in
fact not a bad player. The authors of this ar-
ticle had quite a difficult time playing against
it, except in the case where the allOnes is put
into a position where it can no longer move
very early in the game. But how well would
it fare against more experienced players? Al-
though there might be some online gaming site
running Mill, the allOnes has some fatal weak-
nesses. These include the before mentioned
early strangulation, but minimax and alpha-
beta also only evaluates the leaf board states in
the search tree, and thus cannot differentiate
between quick and slow improvements within
the ply. This actually applies to any network
running on our system, and not just allOnes.
A human player is quick to seize the opportuni-
ties that arise from the mentioned weaknesses,
making it hard to see what the network is good
at.

The fact of the matter is that allOnesPlayer
plays well, but there simply must be ways to
improve the network to avoid the network’s

weaknesses, simply by altering the network weights.

Some improvements one could imagine would

be:
e Reckognition of “near-mill” constellations.
e Penalizing low movability.

Why did our evolution and hill climbing
have such a hard time competing with this al-
10nesPlayer? It ought to be able to evolve the

15This is why we have also implemented what we call
the simplePlayer, which is simply a hand coded ver-
sion of the allOnesPlayer running a lot faster because
it doesn’t need to evaluate a neural network.

allOnes behavior, and possibly improve on it.
It is notable that in the case where we evolved
from an initial population of allOnesPlayers,
the evolution had a very hard time improv-
ing the networks. We never really achieved a
better player, only players able to do slightly
better than allOnes when it was making the
initial move.

Although our evolved networks could not
really compete with allOnes, we tried playing
them ourselves. They did play fairly well in the
sense that they often blocked our attempts to
make mills, and were able to make mills them-
selves. It was however clear that the networks
had many “blind spots” on the board, where
they were unable to see an upcoming opponent
mill or make one themselves. These networks
were around generation 250 evolved from an
initally random population with the simplest
of the neural networks. We are confident that
they could play even better and approach al-
10nes if they were given more time to evolve.
The question is if they could have evolved past
allOnes. This is not so certain since an evo-
lution initialized with allOnes players did not
fare notably better.

Unfortunately we never really settled on an
implementation and configuration of the sys-
tem, and bugs in the code required restarting
the evolution many times. Because of this cou-
pled with a shortage of time, we never had an
evolution run for several weeks as Fogel did
(see [1] and [2]).

Also the implementation of the alpha-beta
algorithm came too late in the project to re-
ally impact the end result.

As mentioned in section 3, we have tried
giving the network some spatial information by
including the sum of pieces for each line of mill,
but without notable success. With the cur-
rent implementation of the neural networks,
this spatial information can be described in
the network itself, without the need for extra
input. We had hoped however, that it would
speed the progress. It mostly just seemed to
slow the evolution though because of the in-
creased network complexity.

We also would have liked to try out other
kinds of neural network implementations, like
a sigmoid neuron behavior and more complex
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layer connections, but did not have the time.

5 Conclusions

When we started this project we hoped to end
up with an evolved network which could play
mill on an expert level. What we eventually
ended up with was a program which actually
plays fairly well - but it does not beat the sim-
ple network with all weights initialized to 1.
This is of course not a very satisfying result but
it raises the question about how much better
can a neural network give a quality to a board
than simply following the ’greedy’ strategy of
the all-ones player - namely to always follow
the path which leads to the removal of one
of the opponents pieces. There certainly are
other aspects to playing mill and this shows
when a human player plays against the net-
work. The computer could for example bene-
fit from being able to plan for a strategy and
follow it for even more moves that it uses in its
look-ahead. Also certain board states that the
all-ones network judge to be of equal quality
because the number of pieces on them is the
same has other more subtle aspects to them
which makes a human player judge them dif-
ferently. Unfortunately none of these enhance-
ments were found in our evolution and it re-
mains an open question if they can be repre-
sented by a neural network at all.

It is possible that a better mill player can
be evolved using Fogels method with a differ-
ent setup than the one we used but we think
we did try out many different ideas and none
of them gave any results at all.
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Effect of dimensionality in the Diffusion model

Niels C. Bach and Roar Kjeer-Larsen

Abstract— Abstract. A common method
of improving evolutionary algorithms involves
a sort of structure, in which the position of
the individuals restrict their free interaction
with other individuals. The diffusion model
is such an example with some fixed interac-
tion range in the structure. Very often this
structure or landscape is two dimensional.
‘We question the rationality in this choice. A
diffusion model is developed to handle any
dimension of the involved landscape. Exten-
sive test have been performed comparing the
traditional 2D model with a 1D model. The
full functionality seems to be preserved with
this simpler approach. Test have been per-
formed to examine the effects of increasing
the number of dimensions. No special ef-
fects are observed, only a gradual transition
into a standard EA. Test involving changing
the interaction distance in the 1D model has
been performed. The same gradual change
is observed here. A measure of the ”com-
plexity” of a given structure is developed
and shown to facilitate comparison between
different models. We conclude that for the
used benchmark problems the 1D model is
equivalent with the other topologies and of-
fer a much simpler algorithm..

1 Introduction

Several techniques for improving the standard
EA have something in common; they introduce
a sort of landscape in which the individuals of
the EA live. The goal of this is to eliminate
premature convergence and maintaining diver-
sity.

The diffusion model for instance, though in-

spired by the structure of parallel computers,

resembles animals living over a wide area. Close
proximity is required to be able to interact di-

rectly - without actually having more than one

population.

Most of these examples feature two dimensional
landscapes without any explanation for this
choice.

Choosing the diffusion model as example we
aim to implement this EA with its traditional
square grid as landscape. We will try to adopt
some method for generalising the EA to use
any number of dimension for the grid.

This should allow us to examine several in-
teresting points. First of all, is it really worth
going through all the trouble of creating a 2
dimensional structure at all? Can a much sim-
pler one dimensional model compete with the
original? Next, what possible benefits can come
from adding more dimensions to the landscape.

Further it would be interesting to possibly watch
the diffusion model gradually degenerate into a
standard EA when the dimension of the land-
scape gets high enough and all individuals are
direct neighbours.

2 Model

We have, for a start, based our algorithm on a
standard EA; thus repeating the cycle of evalu-
ation, selection, crossover and mutation. Rep-
resentation is by real value encoding, and ini-
tialisation with uniformly distributed random
vectors.

The genome of the best individual for any gen-
eration is saved and inserted into the next gen-
eration at the same position. This elitism en-
sures that the best solution is not lost.
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N-dim Diffusion {
t =0
initialise population P(0)
while (not termination-condition) {
evaluate population P(t)
save best individual in P(t)
select P’ (t) from P(t)
through tournament
create P"(t) from P’ (t) with
arithmetic crossover
create P(t+1) from P"(t) with
Gaussian annealing mutation
insert saved individual in P(t+1)
t =1t +1
}
+

The probability p(t) decides whether there will
be selection (or plain copying) for any given
position. Selection is by tournament between
two random individuals and the ”source” pop-
ulation is kept fixed by copying the results into
a separate array.

Tournament {
for all individuals I in P(t) {
with probability p(t) {
pick two individuals from I’s
neighbourhood in P(t)
compare fitness of these two
individuals
insert copy of fitter individual
in P’ (%)
} else {
copy I from P(t) to P’(t)
b
b
}

The probability p(c) decides whether there will
be crossover (or plain copying) for any given
genome. Crossover is arithmetic between two
random individuals with a separate uniformly

distributed weight for each genome.The ”source”

population is kept fixed and separate from the
newly calculated individuals.

Crossover {
for all individuals I in P’(t) {
pick two parents from I’s
neighbourhood in P’ (t)
for all genomes G in I {
with probability p(c) {
create randomly weighted mean
from parents G’s
insert mean as genome in I in
P" (%)
} else {
copy G from P’(t) to P"(t)
3
b
X
b

The probability p(m) decides whether there
will be mutation (or plain copying) for any
given genome. Mutation is by addition of a
random normal distributed number. The vari-
ance of the normal distribution starts out with
the value o2 and is multiplied with the factor
1/(t+1), thus decreasing for each generation.
(annealing)

Mutation {
scale mutation variance W with 1/(t+1)
for all individuals I in P"(t) {

for all genomes G in I {
with probability p(m) {
add random number from
N(O,W) to G
}
insert G as genome in I in P(t+1)
}
}
}

The algorithm has after this been modified
into a diffusion model which pictures its indi-
viduals arranged in a rectangular two dimen-
sional grid. To avoid anomalies the grid wraps
around in all four directions being equivalent
to a torus.
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The neighbourhood of an individual is defined
as those individuals within a specified range in
the grid. If the range is 1 the neighbourhood
consist of the individual itself (I) and the eight
adjacent individuals (N).

Any individual is restricted to interaction with
individuals in it’s own neighbourhood. Actu-
ally we have restricted tournament and parent
selection for a given position in the grid to the
neighbourhood of this position.

This model can be generalised to one, three
or more dimensions of the grid. One dimen-
sion yields a ring structure and three or more
a hyper-torus. The neighbourhood in d dimen-
sions is calculated as:

(x’(1),x°(2)...x°(@)) = (x(0)+r(0),x(1)
+r(1)...x(d)+r(d))

where r(i) is discrete uniformly distributed on
[[R:R] and R is the interaction range. Wrap
around by restricting each parameter x’(i) to
the grid size by modulus.

If we assume this d-dimensional grid is of the
same size in all directions and we picture its
individuals as one linear adressed array the in-
dex I’ of the neighbourhood of I is:

standard EA:
1-D diffusion:
2-D diffusion:

I’=[0:N-1]

I’=(I+r(0)) mod N

I’= (I mod sqrt(N)
+r(0))mod sqrt(N) +

((I div sqrt(N)+r(1))mod sqrt(N))*sqrt(N)

3-D diffusion: I’= ... arrgh!

where N is the population-size and mod & div
the modulus and integer division operators.
Not very nice.

Picture the 2D situation with N=9

wrap around means horizontally that for in-
stance 6 and 4 connect. If we instead con-
nect 6 to 7 and likewise for the rest, things be-
come easier, corresponding to a torus twisted
slightly at its ”seam”.

standard EA:
1-D diffusion:
2-D diffusion:

I’=[0:N-1]
I’=(I+r(0)) mod N
’=(I+r(0)+r (1) *sqrt (N))
mod N
I’=(I+r(0)+r (1) *gbrt (N)
+r(2)*qbrt (N) "2) mod N

3-D diffusion:

d-D diffusion: I’=(I+SUM(i=0 to d-1)

r(i)*N~(i/d)) mod N

This last formulae works even for non-hyper-
cubic population sizes:

N # k¢

where k is some integer and allows to compare
a fixed populationsize under several topologies
with different dimensions. Otherwise N would
have to be a "magic number” like 26, 212, 260
for 1—3, 1—4 and 1—5 dimension respectively.

This slight change of the true hyper-torus is
assumed to have no side-effect.
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25-26-27 Popsize 373 = 27
/]
22-23-24 from center (14)
/]
19-20-21 - right: +1 = +27°(0/3)
- left: -1 = -27"(0/3)
16-17-18
/] - in: +3 = +27°(1/3)
13-14-15 - out: -3 = -277(1/3)
/!
10-11-12 - up: +9 = +277(2/3)
- down: -9 = -27°(2/3)
07-08-09
/ N~ (i/d)
04-05-06
/] mod 27 =>
01-02-03 twisted wrap left/right

3 Implementation

Through out the whole project we have main-
tained two different implementations. One in
JAVA reflecting a true representation of the
multidimensional diffusion model grid and one
in C with a one dimensional array and a neigh-
bourhood function. Comparing the outputs
from both models has helped greatly to iden-
tify errors in the implementation. In despite of
their very different nature they have been able
to produce the same results within statistical
errors.

We have performed other extensive test of the
two systems to weed out mainly conceptual
error possibly common for both implementa-
tions. The JAVA implementation was espe-
cially easy to test component after component
while building it. Most important have been
comparing performance for the 2d and std. EA
settings with known good results, from espe-
cially the RBEA paper. It has been very useful
to manipulate the standard problems to attain
their minimums somewhere outside the classic
value at origo.

For the C implementation we have addressed
a widespread problem. The random number
generator guaranteed by ANSI C has several
flaws. Especially important in our case is the
correlation in k-space (important when initial-

ising a multidimensional problem) and non-
random behaviour of the low order bits (us-
ing mod to get small integers). An alternative
random number generator and conversion to
Gaussian distribution was copied directly in C
from chapter 7 of ”"Numerical recipes in C”.
The code is based on a multiplicative congru-
ential generator:

I(j+1) = (16807*I(j) mod 2147483647)

with Schrage’s algorithm for avoiding 64 bit
work. A shuffling procedure is added after-
wards. Except for ranl & expdev the code is
our own.

4 Experiments

As mentioned earlier we have assumed that the
trick of using a modified wrap around system
for the grid wouldn’t influence the results. By
direct comparison of results from the JAVA
and C implementations this has been verified.
The C implementation uses the twisted torus
and the JAVA implementation the real torus
due to its real multidimensional structure.

4.1 Setup

The presented graphs show fitness of best indi-
vidual in each generation and some the mean
fitness of the whole population in each gener-
These figures are averages calculated
from 30 consecutive or simultaneous runs. All
runs have been executed with a population size
of 400 individuals.

ation.

Each graph represents a hole series of exper-
iments. We have started each with an auto-
mated search of the parameter space to ob-
tain an overview of the feasible combinations of
p(t), p(c), p(m) and sigma. This has been fol-
lowed by an extensive hand optimisation where
we have searched mostly for typical instead of
optimal results.

The used parameters are listed with each graph
together with the type of algorithms used, their
dimensionality and neighbourhood size. Where
this size is omitted a default of 9 has been used.
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4.2 Test functions

Schaffer F6:
f(CC y) _ sin?(y/z2+y2)—.5

(140.001(z2+y2))?
—100 <=z,y <= 100

Rastrigin F1 (20d)

fa') =32 2% — 10cos(2mx;)

—5.12 <=z; <=5.12

Griewank’s function:

F@') = 355 Sisy (@i — 100)2=T[;2, cos(£A%
—600 <= z; <= 600

De Jongs F2:
f(a,y) = 100(z? — y)* + (1 - 2)?
—2.048 <= z,y <= 2.048

De Jongs F4:

f(z') = Z?gl it
—1.28<=z; <=1.28

4.3 Standard EA, 1D diffusion and
2D diffusion

The first series of experiments are supposed
to analyse whether a 1 dimensional diffusion
model with a neighbourhood of 9 is capable of
producing results similar to the 2 dimensional
diffusion model with the same neighbourhood
size. The standard EA is displayed alongside
to indicate whether the special abilities of the
diffusion models are actually used. Rastrigin
F1 with high selection, huge mutation and no
mating is an example of unwanted settings in-
dicated by the superiority of the standard EA
(random search).

Rastrigin F1, De Jong F4 and Griewank show

similar pictures; the standard EA is much quicker

than the others but looses diversity and stag-
nates after relatively few generations. The 2D
does better but still stagnates in a similar way
where as the 1D retains more diversity and
does not stagnate or does so on a very low
level.

In both Schaeffer F6 and De Jong F2 the curves
of the mean are off scale. But even with enough
diversity for everyone the 1D outperforms the
two others.

At least for these test functions it is clear that
the 1D diffusion model can perform just as
well as the 2D can. It is also seen that the
same neighbourhood size for the two different
topologies does not mean that they perform
alike.

RastrigenF1 (20D) P(t)=0.9 P()=0.1 P(m)=0.01 Sigma=1
T T

10

mean ZD dlffuaon

g
(S 4
2k 4
o | I I [ R I M
0 100 200 300 400 500 600 700 8(
Generation
Figure 1:
Scaffer F6 P(t)=0.3 P(c)=0.5 P(m)=0.03 Sigma=100
0.014 = T T T
: mean ZD dlffuson
: best %B glﬂuson
= mean iffusion -~~~ -
0012 best 1D diffusion - - -
ean sStd EA — — -
001 "hest S EA J
g 0.008 - . N
£ e
T 0.006 [ : . =
0.004 - . . A
0002 T . E
0 I I I L : | 1 4
0 100 200 300 400 500 600 700 8(
Generation
Figure 2:
Griewank P(t) 0.4 P(c) 0.9 P(M)=0.067 Sigma=30
25
Sy \ ‘ " mean 2D diffusion
B best 2D diffusion
\ N\ mean 1D diffusion -----
ol W N best 1D diffusion - - - - |
LA 8 ean Std EA — — -
b&st std EA
15 ‘
g
g

0 100 200 300 400 500 600 700 8(
Generation

Figure 3:
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De Jong F4 P(t)=0.3 P(c)=0.3 P(m)=0.001 Sigma=0.01
T T T T

0.0002 : —
. Y mean 2D diffusion
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Figure 4:

De Jong F2 P(t)=0.3 P(c)=0.3 P(m)=0.05 Sigma=1
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Figure 5:

4.4 Diffusion model with different di-
mension

In this experiment we increase the number of
dimensions of the diffusion model while keep-
ing a interaction range of 1. This means that
the neighbourhood size increases as 3¢. When
six dimensions are reached the neighbourhood
size calculates to be bigger than the popula-
tionsize. This means that all individuals are
neighbours and that there are several ways to
reach some of the other individuals resulting in
non-uniform selection. The 6D ought to per-
form like an standard EA.

Rastrigin F1 shows that 1D performs OK and
2D stagnates a bit below 6. This last result is
identical to the one one Figure 1. Comparing
the same graphs for the 1D shows a difference
because of the different neighbourhood size (3
and 9). 3D to 6D all stagnate around 8 after
approx 100 generations. This is identical to
the performance of the std EA on figure 1.

De Jong F2 shows a similar picture. 1D per-
forms excellent, even better than the 9 neigh-
bourhood 1D from figure 5. The 2D does well
too but surprisingly a bit worse than the iden-
tical 2D from figure 5. The algorithm is the
same but the implementations differ widely,
so we have performed several comparison test.
The difference stems from a high variation in
the performance even when averaged over 30
runs. The 3D to 6D show performance close
to the std EA on figure 5.

The general picture from the two graphs above
repeats itself with the Schaffer F6. The curves
correspond with those on figure 2. almost as
clear as before. The 1D seems to benefit more
with the 9 neighbourhood size here than with
the 3. This is problem dependent at least.

It is clear that the different implementations of
the 2D model act the same, just as expected.
The gradual change from restrictive 1D model
to 6D equivalent to the std EA is very easy to
observe. Whether there is no real difference
between the 4-5-6D models or it is a question
of wrong test functions is not yet known.

Schaffer F6, P(t)=0.3 P(c)=0.5 P(m)=0.03 Sigma=100
T T T T

] T .
: 1D diffusion (3) —— 4
0014 ff 2D diffus’ongg
} B g%ﬁﬂégﬂgsl
0,012 5D dgffusjonE 41) — — - 7|
¥ 6D diffusion (400,
0.01 4
R
B 00081 -
S
" 0006 -
0.004 —

0.002 -

Generation

Figure 6:



128 NieLs C. BAcH AND ROAR KJ&ER-LARSEN
Effect of dimensionality in the Diffusion model

De Jong F2, P(t)=0.3 P(c)=0.3 P(m)=0.05 Sigma=1
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Figure 7:

Rastrigin F1 (20D), P(t)=0.3 P(c)=0.3 P(m)=0.05 Sigma=1
10 TT T T T T

Fitness

400 500 600 700 8(
Generation

Figure 8:

4.5 Neighborhood size

RastrigenF1 (20D) P(t)=0.9 P(c)=0.1 P(m)=0.01 Sigma=1 (30 runs, best 1D diffusion)
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Figure 9:

The last experiment is similar to the one
before. Again we want to change the diffusion
model gradually from most restrictive mode
to a mode similar to the standard EA. As we
have not seen any special improvement of the
diffusion model by adding more dimension to
the grid it is tempting to ask whether the 1D
model may not replace all these multi dimen-

sional topologies altogether.

We can use the interaction range in the 1D
diffusion model as our parameter and thus reg-
ulating the neighbourhood size. By watching
the very gradually changing curves carefully
and picking a few interesting values of the in-
teraction range we got figure 9. Starting with
a neighbourhood of 3 we see that it is identical
to the one in figure 8 which is not surprising.
A neighbourhood of 5 seems close to the opti-
mal although it does not reach 0 every time.
The neighbourhood of 9 is of course identical
to the result for 1D on figure 1. At 19 the re-
sults start to get unacceptable. The algorithm
is fooled by the local minima at 1 too often
resulting in the high average stagnation value.
At very high values we again get the std EA
from figure 1. (last not on graph)

The 41 neighbourhood size line is quite inter-
esting too. It corresponds nicely to the 2D
with 9 neighbourhood size. If we calculate
the minimal number of ” jumps” (along allowed
connections) we will need to get from one in-
dividual to any other individual we get some-
thing interesting. This is the minimal number
of generations for some information to spread
from one point to the rest of the grid. Let us
call this the ”complexity” of the topology.

The dimension, neighbourhood and complex-
ity for the topologies with graphs for Rastrigin
F1 are shown in table 1.

Notice that this ”complexity” corresponds closely

to the performance of the topology. The two
identical graphs for 2D-9N and 1D-41N men-
tioned above have the same ”complexity”. Fur-
ther test have confirmed these results.

We can conclude that the 1D diffusion model
with variable interaction distance is more than
sufficient to produce all the seen results. It is
even possible to regulate the restrictiveness of
the topology finer than the multidimensional
model allows. We also have a nice measure for
the ”complexity” of the topology.

An interesting idea is to incorporate the inter-
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Dimension Neighbourhood complexity
1D 9N 50
2D 9N 10
1D 3N 200
1D 5N 100
1D 19N 20
1D 41N 10
3D 27N 7
4D 81N 4
5D 243N 2
6D 400N 1
std EA 1
Table 1:

action range into the genome of the individuals
and have this setting regulated by the ea. The
fact that an individual can only increase its
influx of foreign genome material with this pa-
rameter and NOT to export it’s own genome
more effectively with it should prevent a unsta-
ble evolutionary behaviour of the individuals.

5 Discussion

It is evident from the listed results that nei-
ther the dimensionality nor the neighbourhood
size alone is enough to categorise the effect of
the chosen topology. If we define the minimal
number of ”steps”, we have to trace trough the
topology to be able to reach any one point from
any other, as the ”complexity” of the topology,
we can see a distinct correlation with the effect
on the algorithms behaviour.

The higher the ” complexity” number the more
it tends to preserve diversity, the closer to 1
the more it resembles a standard EA. Two
widely different topologies with same ”com-
plexity” number are shown to have identical
behaviour.

We have until now focused on the direct di-
mensionality of the diffusion model. A bit
more general we can say that we have N in-
dividuals that can communicate freely in the
standard EA and that we restrict this by only
allowing certain connections in the diffusion
model. The topology of these connections can
be whatever we can imagine, not just those

motivated by the picture of some hyper-torus.

If a simple topology can achieve the same re-
sults as a more complicated one the simple is of
course the one too choose. It’s hard to imagine
a simpler one than the one dimensional array
connected as a circle. Either with just connec-
tions between immediate neighbours or with
some interaction distance.

range=1:-0-0-0-0-0-0-

ANVAVA
range=2:-0-0-0-0-0-0-0-
VAVWAW.

We have not been able to document any ben-
eficial effect of the more complicated models -
which doesn’t mean that there is none or that
some other complicated scheme might work.
And we have seen the simple circular model to
produce just as nice results as the others. This
together with the easy and precise regulation
of the topology’s so called complexity makes
us confident that it’s a wise choice.

6 Problems

In both implementations of the crossover op-
erator there is a small bug. Two random par-
ents are chosen from the neighbourhood. Each
genome is replaced with either a weighted mean
between the two parents or the genome of the
individual in the SAME position in the pre-
vious generation. Thus it is likely that the
new genome is a hybrid mix of THREE other
individuals. Not what we had in mind. We
should have used one of the parents for the
copying part. Unfortunately this changes the
behaviour of the hole algorithm for a lot of the
already finished experiments and graphs. We
choose not to correct the error.
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Abstract— An evolutionary model for clas-
sification of utterances is proposed. In this
model feature vectors are extracted from the
speech signal. A set of proposed measures
are calculated from the feature vectors and
these are used as input for training a Koho-
nen network. The task of the evolutionary
algorithm is to optimise a set of weights for
the distance measure used in the Kohonen
network. The network is evaluated on it’s
ability to distinguish sets of training data.
The set of weights that gives the best fitness
are expected to show the relative impor-
tance of the measures with regard to distin-
guishing the different types of input. Having
performed several experiments for fine tun-
ing the EA and testing the quality of the
results, we conclude that although the EA
is able to find extremely good separations
of the input, this might be due to the small
amount of input data compared to our chro-
mosome length and the size of the Kohonen
network. On the other hand the results also
show fast convergence and a stable result in
the less involved experiments. We conclude
that coupling EAs with Kohonen networks
for automatic optimising of data classifica-
tion problems is indeed a useful tool that
however needs some refinement.

1 Introduction

The project described in this paper attacks
the problem of partitioning a set of human ut-
terances according to one or more predefined
criteria. The perhaps biggest problem in ob-
taining this goal, is that quite often one has
no a priori knowledge of a set of parameters
discriminating one utterance from another ac-
cording to a given criterion. For example, in
determining whether an utterance originates
from a male or a female speaker one intuitively
suspects the pitch to be of significant impor-
tance. In the general problem of discriminat-
ing utterances of one voice from another, how-
ever, it is hard to estimate which features are
of importance. Furthermore, the weighting of
one feature as opposed to another is not evi-

dent either.

Historically, much effort has been put into
the task of speaker identification, a special case
of the general problem formulated above, mainly
based traditional techniques such as Hidden
Markov Models, template matching based on
Dynamic Time Warping, neural networks, etc.
(see [1], [6])

In this paper we investigate another ap-
proach, describing a system which uses an evo-
lutionary algorithm to optimise an “utterance
distance measure”, a weighted euclidian dis-
tance measure operating on vectors of so called
feature measures that are calculated on sets of
feature vectors extracted from a set of training
utterances. The weighting is evolved accord-
ing to the set of criteria one wishes to clas-
sify according to and can afterwards be used
in building a Kohonen Network (as described
in [4] and below), a self organising map, that
performs the actual classification on arbitrary
utterances.

In the sections below, we describe the model
underlying our system, the experiments con-
ducted and the results obtained.

2 System Description

An overall view of the system can be seen in
figure 1. The input to the system consists of
the following:

e A set of training utterances. These are
sampled waveforms of speech'® on which

no particular restrictions are imposed, apart

from the fact that they should represent
as great a diversity as possible with re-
spect to the criteria one wishes to clas-
sify according to. In the experiments
described later, however, some prepara-
tory work was done in order to enhance
the performance of the system (see sec-
tion 3.2).

From now on, a sampled utterance is referred to as
a speech signal or simply a signal.
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e The criteria one wishes to classify ac-
cording to, along with the classification
of each training utterance. For example,
if one wishes to partition male and fe-
male speakers, the system must be sup-
plied with the criterion “male/female”
and each training utterance must be tagged
as originating from either a male or a fe-
male speaker.

o A set of feature measures each of which
expresses some facet of an utterance. Fea-
ture measures are described in detail be-

low.

Feature Training Utterances

measures Criteria (speech signals)

Featur_e
Extraction
Y
EA
A Candidate

Fitness v weights

Kohonen

Optimal weights Network

Figure 1: System overview

The overall goal of the system is to evolve a
vector w of weights such that the Classification
Measure, defined as:

CM(S“ S]) = dist(wXFM(Si), ’UJXFM(S]')),

can be used as a distance measure in train-
ing a Kohonen Network, such that the classifi-
cation thus performed is optimal with respect
to the given criteria.

In the formula above, FM designates a set
of feature measures, each representing some

property of an utterance that can be calcu-
lated from the speech signal, or a transforma-
tion thereof (i.e. mean pitch, energy variance
etc.), thus FM(S;) refers to a vector where
each entry contains the result of evaluating a
feature measure on signal .5;. dist denotes eu-
clidian distance, while x denotes pairwise mul-
tiplication of vector entries.

The task of finding w is solved by an EA,
where each individual represents a candidate
vector. To evaluate a candidate, a Kohonen
Network using that candidate in its distance
measure is trained with the training utterances.
From this process a fitness can then be calcu-
lated. In the end, the candidate receiving the
best fitness constitutes the output of the sys-
tem.

Below, the key components of the system
are described.

2.1 Feature extraction

Since a speech signal consists of an imprac-
tically large amount of data with the char-
acteristics of the speaker not directly “visi-
ble”, some means of extracting this informa-
tion must be chosen. Omne possibility is to
calculate the power spectrum [3](or perhaps
the slightly more complicated cepstrum) of the
signal, using the Fast Fourier Transform al-
gorithm. While this certainly reveals a great
deal of information about the speech signal, it
does nothing to reduce the amount of data to
be handled, since the size of the power spec-
trum for a signal of length N is itself N. In-
stead we employ a different technique (a quite
common approach), using a speech signal com-
pression algorithm to reduce the amount data.
A “fortunate” by-product of this is that with
the algorithm chosen, the compressed data di-
rectly expresses a set of features of the par-
ticular signal. Applying a number of feature
measures to such a feature set, we then (can
hope to) obtain a set of numbers characterising
the speaker of each utterance.

The actual algorithm chosen is Linear Pre-
dictive Coding and in particular the US De-
partment of Defence version (see [5]) called
LPC10-E. We briefly describe the concepts of
this algorithm here. A more comprehensive
description can be found in [2].
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The general objective in (this form of) lin-
ear prediction is to express the i'th sample
point of a signal as a linear combination of the
M previous sample points and a residue called
the error:

M
S(i) = apS(i — (M —k)) + e(i)
k=1

The task is thus to determine the coeffi-
cients a such that the error is minimised. At
the bottom line, this amounts to solving a spe-
cial system of linear equations, but we shall not
delve into the details of that here - the inter-
ested reader is referred to e.g. [2].

A common approach used when modelling
the human sound production system (see [6]
and [1]), is to regard the vocal tract as a se-
ries of uniform cylinders with varying cross-
sectional areas. This is called the acoustic tube
model. An interesting property of LPC is that
the M coefficients found above can be shown
to be equivalent to the so-called reflection co-
efficients which in turn define the area ratios of
the cylinders in the acoustic tube model. The
coeflicients thus represents a description of the
state of the vocal tract at a particular point in
the signal.

In the case of LPC10-E, a signal is pro-
cessed in chunks (frames) of length about 22ms
(this number is chosen based on the rate of
change of the vocal tract during speech). For
each frame, 10 LPC coefficients are calculated
(i.e. M =10 in the formula above). On top of
this, LPC10-E also provides estimates of the
voicing, pitch (if applicable) and the energy
level of the frame as a whole.

Altogether, a feature set for a particular
utterance in our system can be described as a
set of 14-dimensional feature vectors contain-
ing the energy, pitch and 10 numbers describ-
ing the shape of the vocal tract.

2.2 Feature measures used

As mentioned above, the feature measures are
the components that make up the CM. The
feature measures naturally plays a great role
with respect to what can actually be classi-
fied with the system and the search for good
feature measures is a quest in itself. We have

chosen to equip the system with a set of stan-
dard measures and our hypothesis is that a
weighted sum of these measures are adequate
for a large number of classification tasks.

The feature measures used in our system
consists of calculating the mean, variance, min-
imum, maximum and difference between max-
imum and minimum for each entry in the fea-
ture vectors of an utterance. This leads to a
total of 60 feature measures.

2.3 EA configuration and EA oper-
ators

The EA used is based on a standard GA us-
ing real encoding. This was chosen for conve-
nience, since we are optimising a real valued
vector. As mentioned before, each individual
represents a candidate for the weight vector
to be determined. Specifically, an individual
consists of one chromosome which is a vector
of the weights to be applied to the feature mea-
sures.

The selection scheme employed is a com-
bination of elitism and tournament selection
with a tournament size of two. During the
selection phase, an elite consisting of the k
fittest individuals, where k is a constant frac-
tion of the population size, are automatically
selected. Next, individuals are selected using
tournament selection until a total number of
individuals equal to the population size has
been selected. Finally, the selected individ-
uals are allowed to mate at random, creating
offspring which is subject to crossover and mu-
tation with constant probabilities. Notice that
the elite is copied directly to the next genera-
tion and is not subject to mutation.

The crossover operator used is a simple 2-
point crossover, with the 2 points selected at
random for each crossover made. This type of
crossover was selected because initial experi-
ments showed that with a standard arithmetic
crossover the EA had difficulties pulling irrel-
evant genes towards zero (an important prop-
erty of our system — we want the system to
“pick” the feature measures needed to perform
the classification task). Moreover, in this way
we also hope to avoid stagnation due to the
7averaging” effect which results from using e.g.
the standard arithmetic crossover.
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With respect to mutation, the following
scheme is used: Mutation of an individual oc-
curs with a constant probability throughout
the entire run of the EA. The type of muta-
tion performed differs, however. Rather than
adding a small amount to each gene, as done
by Gaussian mutation, only a fraction of the
genes are affected. The type of mutation (of
which there are three) is randomly decided.

Each individual has a probability of 85 %
for each of it’s genes to be either normally or
highly mutated. The number of genes mutated
is decided by a parameter P;. Whether a gene
is normally or highly mutated is decided by a
parameter P.

Let n be a normally distributed number
with mean 0 and variance 1 and Lim1 be the
lower border of the gene and Lim2 the upper.
Then high mutation is calculated as follows:

Newgene = Oldgene + (Lim2 — Lim1) xn/3
and normal mutation as following;:
Newgene = Oldgene x P,

where P, is a parameter called mutation alter-
ing.

There is a 10 % probability of an individual
having all of it’s genes mutated in the following
way:

Newgene = Oldgene x P,

Finally there is a 5 % probability of an in-
dividual having all of it’s genes mutated in the
following way:

Newgene = Oldgene — 1

The reason for using the term P is, that
we would like to alter the genes relative to how
big the number represented by the gene is, but
occasionally in a more drastic way. The high
mutation type is included to give “new blood”
to the population. Sometimes we would like to
“stretch” all the genes in an individual to cope
with the problem that genes are generally too
small or too big. Finally the last mutation is
done to give the EA an easy way to eliminate
useless genes close to 0, as we we hope that a
few feature measures can partition the data.

2.4 Kohonen networks

Kohonen networks are an example of self or-
ganising maps. The purpose of these classifica-
tion networks is given a set of training vectors,
to form two or more groups depending on the
contents of the vectors.
the networks as being a kind of intelligent pro-
jection from a space of high dimension (that
of the input vectors) to a space of low dimen-
sion that is easier to interpret (usually one or
two dimensional networks are used). Having
trained a Kohonen network one should be able
to present to it a new vector and have this clas-
sified. The basic idea of the Kohonen network
is fairly simple:

Thus one can view

e Build a two dimensional array of small
size (10x10-30x30 seems appropriate in
most situations), containing vectors of
the same length as the input.

e Initialise the vectors in the network with
random data.

e For each vector, v, in the training set
find the vector in the net with the closest
distance (euclidian or other) to v.

e In the neighbourhood around the closest
vector, pull the network vectors toward
the input vector.

The two latter steps (depicted in figure 2) are
iterated.

Node in network closest to input is found Neighbourhood of node s pulled (50%) towards input

Figure 2: The workings of a Kohonen network

Apart from these basics of the network there
are many subtleties and many choices to be
made about the topology of the network. The
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rate of falloff for the size of the neighbour-
hood to be pulled towards the input vector,
the shape (e.g. rectangular or hexagonal) and
the attraction distance are examples of these.

The distance measure for the input vectors
is very important for the success of the net-
work, as this is a vital part of the projection
mechanism. Often a weighted euclidian mea-
sure is used, and thus it becomes an important
task to find the best weights. As the resulting
network is two dimensional, one cannot have
significant noise in any highly weighted dimen-
sion as there thus wouldn’t be enough space in
the network to contain the projected data.

If the weighted input on the other hand
represents data that in some sense is connected
through an arbitrary shape in the input vec-
tor space, the trained Kohonen network will
replicate this shape in two dimensions (possi-
bly warped and twisted).

2.5 EA fitness evaluation

As mentioned above, the genes in the evolved
chromosome is used as weights for a Kohonen
network. We have fixed a size and a topology
for the networks used in our system (the size
is 15x15 and the topology is rectangular). For
each individual we train a Kohonen network
with the weights represented by the individ-
ual, in the distance measure. After training
the network we need to evaluate it’s fitness.
This, of course, is quite a task since there is
no obvious way to rate a trained network, and
furthermore we want the fitness function to
constrain the number of weights different from
0.0 (as we want the result to be a number of
weights that can distinguish categories of input
we want this number to be as small as possi-
ble in order to remove any feature measures
that do not directly contribute to separating
the data).

Our first fitness measure was to check where
the input data was placed in a trained network.
We found the centre of mass of each type of
data (that is data matching a particular input
criterion) in the network and partitioned the
network according to these centres (all points
closest to mass centre of type ¢ was said to be-
long to group ¢ — in other words the partition-
ing is the Voronoi diagram [7] of the mass cen-

tres for the different types of input data). We
then counted the correctly placed input vec-
tors and let the fitness be a percentage of the
total. This worked very well for our first (and
not extremely ambitious) experiment: Parti-
tioning male and female speakers. When we
moved on to other experiments we found that
our fitness measure fell short. When trying to
determine one speaker from the rest we found
that dividing the network in two halves pre-
sented a problem. Even if the speaker had
a unique range for one feature measure, this
would most likely not be detected if there were
entries both larger and smaller among the rest
of the data (even if a trained Kohonen network
placed one speaker inside a circle and every-
thing else outside, it is not possible to place a
line that separates the two sets of data).

Our second approach seems much better.
For each node in the trained Kohonen network,
we find the distance to all of the input vectors.
The type of the closest input vector is assigned
to the node. This colours the network accord-
ing to the types of input. Afterwards we see
where the input data is placed and count the
hits and misses and weigh this according to the
number of input vectors of that type. This hit-
rate percentage is the primary part of the fit-
ness function. Secondarily, we count the num-
ber of connected components in the coloured
network. We would like all of the input data
of a certain type to be grouped together (as we
imagine that they in some sense are grouped
together in their original representation), but
we assume that this is not of primary impor-
tance as we care more about being able to dis-
criminate the input so that the network is ac-
tually usable. As our test results show, this
assumption does not hold completely.

In this approach we would still like the
weights to be 0.0 on as many of the entries as
possible, so we punish the algorithm for creat-
ing individuals having many non-zero entries.

Finally we would like to constrain the weights
to some degree so that genes from different ex-
periments can be more easily compared. First
of all we reasoned that the comparative size
of the weights was the most important, so we
made the genes take values from 0.0 to 100.0.
Secondly, we punish the algorithm a bit for
having the sum of weights being far from 100.0
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(it should not at all matter what this number is
chosen to be) — thus if it is important for the
algorithm to make one weight larger it must
push some of the others down.

This is a rather loose constraint that keeps
the weights close to representing percentages
of importance for the final classification. An-
other idea would be to keep the sum of all
weights constant at all times. This would,
however, require quite atypical mutation and
crossover rules as these would have to scale
the weights of the new chromosomes. It be-
comes rather unclear what a crossover in this
case represents and therefore we have chosen
the looser constraint of making this part of the
fitness function.

Altogether the parts of the fitness function
are:

e The weighted sum of correctly placed vec-
tors of type t, w(t) (a percentage)

e The number of connected components,
cc (an integer in the interval [2;inf])

e The weighted number of non-zero genes,
w(n,) (a percentage)

e The weighted distance of the sum of weights

from a constant (100.0), w(k) (a percent-
age)

We have weighted the different parts of the
fitness as follows:

N

fitness = 10 % Z

t

w(n;)
10

wjgft) +ect —w(k) —

There is even a bit of reason behind the
choices shown in the above equation: First of
all the percentage of correctly placed genes is
by far the primary goal. We are also happy
whenever another zero weight is introduced,
but almost never at the cost of the percentage
of correctly placed genes going down. In ear-
lier models this had a higher priority with the
result that we could go from a state of no er-
rors but with many nonzero weights to a state
with up to a five percent error rate but a lot
of zero weights. As can be seen in the fitness
function formula all weights now only count
as much as one percent of the correctly placed

vectors. This effectively means that it has sec-
ondary importance and weights are only set to
zero if they do not give rise to a worse partition
of the input. The w(k) element is rather small
and only punishes the algorithm when a gene
is set to 100.0 without resulting in a strictly
better partitioning. The cc™1 element is just
chosen to be not too big but still worth im-
proving on (going from three to two connected
components counts as much as two and a half
percents of the correctly placed).

Finally all of these values have been some-
what determined through trial and error — the
final choice being satisfying for us as we have
not seen anything which we would consider as
bad behaviour when comparing chromosomes.

3 Experiments

Due to the fact that the running time of our
implementation of the system is quite long, we
can only perform a limited number of tests.
However we have tried to cover as much as
we can. The following sections describes what
tests we have performed.

Our test data set consists of 12 persons ut-
tering 10 words each. This yields 120 test sam-
ples. Of the 12 persons 6 of them are female
and 6 of them are male. All of the utterances
were recorded using the same equipment and
was afterwards normalised in order to get an
equal maximum amplitude.

Although our model supports partitioning
according to several criteria, our current im-
plementation only supports one.

3.1 Testing the Evolutionary Algo-
rithm

Initially we will test some different parameters
of the evolutionary algorithm in order to fine
tune it. There are quite a number of param-
eters in the present implementation, as sum-
marised in the table below.

Even for a limited number of values this
gives a very high number of tests, which we
can’t possibly perform for all combinations of
the parameter values. Therefore we will cut
some corners doing the tests by only testing
some of the parameters and only alter one at
the time, using standard values for the other
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Param. name Std. value Description
EliteShare 0.05 Part of the best Individuals to
be held
Pc 0.7 The crossover rate
Pm 0.7 The mutation rate (Part of
individuals to be mutated)
Pd 0.05 The mutation degree (Part of
genes in an individual to be mutated)
Ph 0.01 The high mutation degree
(Part of genes in an individual to be
highly mutated)
Pa 2 The mutation altering (Factor
of mutation to be raised to a
normally distributed number when
altering every gene in an individual.)
popsize 40 The population size
TermCond 100 The termination conditon

parameters. Apart from the standard values
we will test the following parameter values:

e Pc: 0.3,0.5,1and 0
e Pm: 0.3,0.5, 1 and 0
e Pa: 1.5 and 2.5

e Ph: 0, 0.05 and 0.1

This yields 13 different tests — as we will
perform each test thrice (once on each exper-
iment type described below) we have 39 tests
to perform.

3.2 Testing the Speaker Classifica-
tion

We have made three overall tests with all of
the 120 samples. We also planned to make
the tests with the following subsets of the 120
samples:

e All persons speaking a particular word.

e 10 different persons each speaking a dif-
ferent word.

This was omitted, because of insufficient
test material (less than 12 samples for the two
subsets).

In the tests we have tried to classify the
test data according to the following criteria:

e Male / Female (1 test)
e Single person / Anyone else (12 tests)

e Single word / Any different word (10 tests)

As for the last criteria, we do not expect
that our system in its current form will ac-
tually be capable of speech classification, since
none of the used feature measures take the con-
tents of the speech signals into account.

Apart from testing whether the resulting
network is able to partition the data correctly,
we would would also like to make sure that it
does not happen by a mere coincidence. We
want to make sure that it is not always possi-
ble to create a good partition of random input
vectors due to the relatively small amount of
test data (we have 120 training vectors and
compared to the size of each vector, 60, this is
rather few). This was done by replacing some
or all of the feature measures with functions
outputting random data. Three test were then
carried out. In the first case we tried com-
pletely random data, hoping for a bad classifi-
cation, since this would indicate our system is
not just good at finding a very complex order-
ing of random data. In the second test all but
one weight are random (this weight partitions
the set in two). In the third all but two values
are random so (so that these two weights to-
gether, but not separately, partitions the set).

All together we performed 65 tests consist-
ing of 39 used for tuning the evolutionary algo-
rithm, 23 for speaker/speech classification and
3 for the random data experiments.

4 Results

Each of the test results presented in this sec-
tion is the average of 5 actual test runs. The
results for the experiments involving the mu-
tation and crossover parameters of the EA are
shown in figure 3 and 4. Note that in both
cases the elite is not affected (even when the
rate is 100%). The altering and high muta-
tion parameters also showed slight variance in
convergence points.

To show that the speaker/speech classifica-
tion tests actually worked out as expected we
have calculated the average ability of the sys-
tem to correctly classify the speakers/speech.
The results can be seen in table 1.

In the table Avg(cc) is the average of the
number of connected components. Avg(cpX)
is the average percentage of correctly placed
vectors of type X. The reason that type 1 is
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Figure 4: Average best fitness plotted against
number of generations.

Experiment Avg(cc Avg(cp0) Avg(cpl)
Male/female 2.0 100% 100%
Person 1. 4.2 98.73% 100%
Person 2. 2.8 99.64% 100%
Person 3. 8.8 99.27% 100%
Person 4. 6.2 99.64% 100%
Person 5. 6.4 99.64% 100%
Person 6. 4.2 99.82% 100%
Person 7. 3.6 98.18% 100%
Person 8. 5.8 99.09% 100%
Person 9. 3.6 98.73% 100%
Person 10. 3.8 99.82% 100%
Person 11. 2.0 99.64% 100%
Person 12. 6.8 99.64% 100%
Average 4.93 99.32% 100%
Auditorium 5.8 98.52% 100%
Bad 2.0 100% 100%
Feta 4.2 99.44% 100%
Heesligt 2.0 97.59% 100%
Julemand 3.2 99.07% 100%
Kaffemaskine 2.6 97.59% 100%
Rugklapper 2.0 100% 100%
Spaek 2.0 100% 100%
Talegenkendelse 5.4 98.33% 100%
Vinterbygster 4.2 98.52% 100%
Average 3.34 98.91% 100%

Table 1: Results of the classification tests.

always better is that this is the smaller group
in our tests, and a single wrongly placed vector
of this type is therefore punished accordingly
more.

For comparison the random data experi-
ment gave the following end result: Avg(cc)
18.8, Avg(pc0) 90.67%, Avg(pcl): 95.67%

The two other random examples (noise in
all but a few genes) were 100% correctly sepa-
rated.

5 Conclusions

There are several observations to be made on
the results gathered. First of all the different
test runs on the same test case finds different
solutions. As this is not improved by letting
the EA run much longer we assume our prob-
lems to have many local optima.

A worse problem, however, is that the ex-
periment with random data has shown us that
it is quite possible to get a good classification
of even completely random data. This could
indicate several things. Firstly the size of net-
work that we used might be too big for the
small amount of data that we have — i.e. each
input vector is likely to find it’s own spot in
the network. This hypothesis is strengthened
by the fact that in the random data case we
had a lot of connected components. Moreover
the number of genes is rather high compared
to the amount of test data, which means that a
random training set is more likely to eventually
result in a chromosome with a good fitness. Al-
together the above means that it is difficult to
conclude anything about the relevance of each
of the feature measures.

The problems can thus be summarised as:

e The EA tends to get stuck in local op-
tima.

e Too little training data was used.

e The amount of correctly placed training
data is not necessarily an indicator of
good fitness.

A solution to the local optima problem could
be to investigate another type of EA, for ex-
ample the Island Model. On the basis of the
results of our experiments it seems that the
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connected component count should contribute
more to the fitness.

The problem of the amount of training data
might actually be improved by trying to parti-
tion on more than one criterion. In this case we
expect that the random data will prove harder
to classify correctly and thus that a good par-
titioning has more validity.

Despite the problems there are also indi-
cations that it is worth continuing down this
path, regarding the problem of speaker classi-
fication. In the experiments partitioning male
and female speakers as well as the random sets
with one or two distinguishing parameters we
found the following qualities. First of all the
EA is extremely quick at finding an optimal
solution and secondly this solution was robust
as well, in the sense that it was the same genes
that were given the highest weights.

Another remark to be made is that the fea-
ture measures used in our current model are
fairly simple. We compress an utterance of
variable length into a fixed set of measures and
the time dimension is dropped. If these mea-
sures indeed are not good enough for distin-
guishing data in more advanced experiments
one might consider the following alternatives:

e LPC spectrum measures can be used to
find formants in speech. As formants for
a set of vowels to a large extent identify a
person we expect that it would be bene-
fitting to have characteristics of these as
a part of the feature measures as well.

e After finding a set of features, the feature
measures could be co-evolved using evo-
lutionary techniques, so that we do not
limit ourselves to predefined functions of
the feature data.

Since we are able to find the important
weights in the simple cases we still believe that
EAs coupled with Kohonen networks are good

at finding important characteristics about speak-

ers, given larger training sets and some model
improvements.
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Maintaining Diversity through Triggerable Inheritance

Henrik Sgrensen and Jacob F. Jacobsen

Abstract—This paper presents a technique
for maintaining diversity in evolutionary al-
gorithms through storing genetic material as
inactive genes. We discuss and contrast the
described technique w.r.t. previous work
in this field. We examine various aspects
of proposed techniques for maintaining and

measuring diversity in evolutionary algorithms.

Finaly we present preliminary results from
using our proposed technique for solving dy-
namic problems.

1 Introduction

One of the major shortcomings of standard

evolutionary algorithms is their inability to main-

tain diversity in the population. This lack of
diversity can lead to a number of problems
such as converging to a non-global optima or
not being able to react to changes in the en-
vironment. The lack of diversity is especially
evident when dealing with multimodal prob-
lems or when using evolutionary algorithms to
solve dynamic problems.

One approach to this problem is to main-
tain a memory structure, enabling the popu-
lation/the individuals to remember useful ge-
netic material from past generations. In evo-
lutionary algorithms, techniques using mem-
ory can be classified as using either an explicit
or an implicit memory structure. The former
is often implemented as a globally available
memory bank together with explicitly formu-
lated strategies to store and retrieve informa-
tion from it [5].An implicit memory structure
is incorporated in the algorithm itself, by us-
ing redundant representation of the genomes,
and leaving control of the storage/retrieval-
operations to the algorithm. We have taken
this approach, using a diploid representation of
the individual’s chromosomes. This way each
individual carries genetic material which is not
expressed in the phenotype. Thus, this inac-
tive genetic information is shielded in the se-
lection process (which is always based on phe-

notypes) and for that reason it can be prop-
agated to future generations. In this way we
reduce the risk of “selecting out” genetic ma-
terial that might prove valueable in the future.
This is especially useful when conditions in the
environment are changing.

The soundness of using diploid chromosomes
in a changing environment can be supported
by more formal arguments. A diploid chro-
mosome stores two alleles per gene, each be-
ing either dominant or recessive. A dominance
map determines which gene is to be expressed,
i.e. a given schema H has an expressed schema
H.(H). It is expected (though it depends on
the dominance function) that the average fit-
ness the expressed schema H.(H) is greater
than or equal to the average fitness of the base-
schema:

f(H(H)) > f(H)

Thus, if a schema H is dominated (as in this
situation), it is not as likely to be selected out
of the population at an early stage, as would
be the case if we had a standard haploid rep-
resentation. This is due to the fact that the
selection is based on the (in this case) higher
fitness of the expressed schema.

The ideas presented above raise many tech-
nical issues: What kind of diversity measure
should we choose (basing it on fitness or on
individuals (genes), global or local measures)?
How should the inactive genetic material be
represented, and how should it be combined
with other individuals’ genes when mating?
Should we able to guide the storage/retrieval
of inactive genetic information (e.g by means
of parameters). Will it be advantageous to
combine this idea with other techniques, such
as imposing a structure on the population (e.g.
an island or a patchwork model)?

Most of these questions are best answered
by experimenting with a concrete implementa-
tion, for which reason we defer this discussion
to the Implementation and Experiments sec-
tions below.
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2 Previous Work

Much work has gone into maintaining diver-
sity within a population and quite a few well-
known methods have been developed. Among
these are sharing and (deterministic) crowding
[4], which work with the idea of similarity be-
tween individuals, thus requiring a consistent
distance measure in the population. Other
approaches, such as the Shifting Balance GA,
Multinational GA, and Religion-Based EA use
subpopulations. However, diploid structures
as a mean of enforcing diversity have appar-
ently been studied very little. One such study
can be found in [1] where D. Goldberg ex-
amines how a diploid representation combined
with a dominance map can outperform a stan-
dard evolutionary algorithm on certain dynamic
problems. More specifically, a genetic dom-
inance function is used on each gene, deter-
mining which of the two stored values is to
be expressed in the next generation. An oscil-
lating 0-1 Knapsack Problem (varying weight
constraint) is used as benchmark, and on this
problem a diploid representation clearly beats
a standard haploid representation — the latter
is simply unable to track changes in the ob-
jective function. The difference is even more

striking when using an evolving dominance func-

tion.
Based on his experimental results, Gold-

berg concludes — not surprisingly — that a diploid

representation with (an evolving) dominance
map is superior to standard methods as re-
gards dynamic optimisation problems. What
might come as a surprise is that the theory of
diploidy and dominance has not been studied
and implemented to a further extent, consider-
ing the ever-growing need for solving dynamic
problems. One reason for this might be the
lack of methods and theoretical guidance — this
is indeed an experimental field with no guar-
antee of success. [5]

3 Implementation

Our implementation is made as an extension
to the Patchwork Model. We expect our tech-
nique to be applicable in a wide range of evolu-
tionary algorithms but the Patchwork Model,
being a spatial model, has an interesting im-

pact on the measurement of diversity in the
sense that it allows us to measure this diver-
sity locally and thereby allowing recall of ge-
netic material to have a local cause and effect.

The Patchwork Model was introduced in
[2] and has previously been used as a base
for allowing self-adaption of the population [3]
eliminating the need for tedious parameter tun-
ing. In our work we have focused on tech-
niques for maintaining diversity and for that
reason, our implementation of the patchwork
model does not include such self-adaption of
the individuals. In the patchwork model the
world can be seen as a two dimensional grid
of fields where each field can contain a fixed
number of individuals and where the grid bor-
ders are connected effectively transforming the
grid into a torus. The individuals in the Patch-
work Model are, in contrast to the traditional
Cellular Genetic Algorithm (CGA) [6], allowed
to move around in the world based on their
autonomous measure of motivation. In our
implementation the individuals are motivated
for grouping up with the fittest individual in
their field of view; the individuals have a fixed
view range of one, meaning that each individ-
ual can see individuals on its own field and on
the eight neighbouring fields, as visualised in
figure 1. If the desired field is already fully oc-
cupied or there is no other individuals in the
field of view, the motivated movement is cho-
sen by random.

Figure 1: Spatial structure of the Patchwork
Model

In the mating phase an individual can mate
with any other individual in its field of view
and the partner is randomly selected by those.



Topics of Evolutionary Computation 2001 141

EVALife, Dept. of Computer Science, University of Aarhus

The mating process first creates two new in-
dividuals using a 1-point crossover operator
[4] and the parent that initiated the mating
process is then compared against the two new
individuals; the fittest of those three individ-
uals will survive and is inserted at the origi-
nal position. Our implementation uses diploid
chromosomes with real value encoded genes
and during the mating process only the ac-
tive genes (the phenotype) is subject to the
crossover; the inactive genes are passed down
from the individual that initiated the mating.
After the mating process the individuals are
subject to mutation using a Gaussian muta-
tion operator with a decreasing factor defined
by

B 1

1+ +/generation

After this point we calculate the fitness for
each individual, move these according to their
motivation after which we calculate and store
the standard deviation of the specified measure
(fitness or genome). This is done for each field
and the deviation being stored is calculated by
considering all individuals in the field of view.
After this we are able to determine whether to
store or recall genetic material for each of the
individuals by considering the four bounds for
store/recall of genetic material as shown in fig-
ure 2. The values of those bounds are of course
problem-dependent and so are the settings for
the store/recall pressure; ps and pu. We have
implemented two different diversity measures:
one based on the fitness and one based on the
active genes. We defined the latter measure by
separately calculating the standard deviation
for each gene and then taking the average of
these standard deviations.This measure, how-
ever, proved to be of limited value, probably
due to the fact that many different gene combi-
nations may result in identical diversity values.

aTl

Our implementation of the individuals geno-
type, active and inactive genes, uses real value
encoding and we only keep one set of inactive
genes but there is no obvious reason not to try
keeping several inactive genes in further exper-
iments. Keeping several inactive sets of genes
for each individual would be more faithful to
the genotypes found in the real world where
the active genes are only a small fraction of

the overall genetic material, but the effect of
this is not obvious and should be studied in
further work.
____

9
/
2

S

Diversity

ul uu sl su

Figure 2: The four bounds for store/recall of
genetic material

The pseudo code for performing the above
mentioned steps are as follows:

initialise world population
for each generation
calculate fitness
move individual
calculate deviation
store material
recall material
produce offspring
mutate individual

The initialisation of the world boils down
to generating a number of individuals and in-
serting them in a randomly chosen field and
obeying the restrictions on the field capacity.

4 Experiments

Our primary objective of the experiments was
to test how our enhancement of the Patchwork
Model has effect on dynamic problems. The
experiments were made with focus on the ef-
fect on diversity, average fitness and best fit-
ness both with and without our enhancement
enabled. The two tests shown in this section
have been performed using the same parame-
ters. When testing performance of the “pure”
Patchwork Model the probability for store/recall
of genetic material has been set to 0, but when
testing with the extension (marked by “trig-
ger”) we have tuned the 6 extra parameters
for optimal performance as seen in figure 3. .

4.1 Test functions

We have experimented with two dynamic test
functions: a dynamic version of DeJongsF1
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Functionno. | uu | ul | su | sl | pu | ps

1 1.0 00|50 |20]0.1|0.6

2 1.0/ 0.0]4.0]2.01]02]0.5

Figure 3: Settings for store/recall

and a dynamic version of UrsemMultimodall.
The reason for trying our technique on a dy-
namic, multi modal problem is that we would
like to see if the same problems occurred with
our deviation measure based on fitness as the
problems with the gene based diversity mea-
sure. When applying the fitness based diver-
sity measure to a multi modal problem, several
different configurations may yield the same fit-
ness value, effectively decreasing the given mea-
sure of diversity and this problem resembles
the previously discussed problem with our gene
based diversity measure.

Dynamic problems can be categorised as
either slowly changing, cyclic or abrupt chang-
ing. The experiments we have conducted has
solely been on dynamic problems that are both
cyclic and abrupt changing mainly because we
find that these problems present a bigger chal-
lenge than, at least, slowly changing problems.
Our tests function called DynamicDeJongsF'1
is defined as follows

if generation%300 < 150

Z (z; +2)* otherwise
i=1

and the dynamic multi modal test function is
made with basis in the function named Ursem-
Multimodall

f(z,y) = sin(2z — 0.57) + 3cos(y + 0.5x) + 0.5z

where we again just add the number 2 to =
and y if generation%300 > 150.

The settings for the store/recall of genetic
material is summarised in table 3, and these
settings has been used for 25 consecutive runs
of the algorithm using a 15x15 world grid with
a population size of 150. The tuning of the
parameters for our extension can be guided
by studying the diversity vs generation graph
from running an experiment without our ex-
tension enabled. This graph gives a rough in-
dication of proper settings for the four bounds.

4.2 Results

The results from the test of our technique on
the first function is found in figure 4-6. When
looking at the plot of the average fitness (fig-
ure 4) we observe that our technique during
the first 150 generations, i.e. before the first
change in the environment, performs a little
worse than the “pure” algorithm but when later
changes occur our technique is more reactive
to this change. However, after around 150 gen-
erations our average fitness is more or less the
same as for the pure algorithm. This should
come as no surprise as our technique could be
said to trade average fitness for diversity.

12

J T
Average fitness (trigger)
Average fithness -------

10 |

Fitness
o

1 1 . 1
200 300 400 500 600
Generation

Figure 4: Average fitness

10 T T
Average best fitness (trigger)
Average best fitness -------

Fitness

0 100 200 300 400 500 600
Generation

Figure 5: Average best fitness

The measure of average fitness shouldn’t re-
ally be the only measure by which techniques
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Deviation (‘mgger)
D

eviation -------

Fitness

0 100 200 300 400 500 600
Generation

Figure 6: Deviation of the average fitness

for solving dynamic problems using evolution-
ary algorithms are compared; when using evo-
lutionary algorithms the measure of average
best fitness tells how good the algorithm is at
finding optimal solutions and here the increase
in diversity (see figure 6) has a positive effect
as clearly seen in figure 5. Furthermore, fig-
ure 6 clearly shows that our technique indeed
increases the deviation of the average fitness
and roughly follows the pattern of the devia-
tion of the pure algorithm.

Our second experiment using a dynamic,
multi modal function gives the same results as
those for the dynamic version of DeJongsF1.
These results are visualised in figure 7-9 and
shows that the diversity measure based on the
fitness value performs quite well on this dy-
namic, multi modal problem and we observe
that our small extension to the patchwork model
enables us to correctly determine the global
optima for the test function where the pure
algorithm fails. Furthermore, the reader may
have noticed that after the first change of envi-
ronment using the function DynamicDeJongsF1
our technique performs worse than after fur-
ther changes which could lead to the conclu-
sion that our technique during the first two
“environments” collects genetic material which
can be used with advantage in later genera-
tions when the environment reverts to some-
thing encountered before. However, when look-
ing at the average best fitness for the second
test function, we observe that the technique is

able to swiftly evolve towards the optimum af-
ter the first change in the environment. Why
these contrasts exists is as yet not fully known
but better parameter tuning may solve the prob-
lem for the first test function.

Aver‘age best fitness (l‘ngger)

Average best fithess -------

Fitness
&

1 1 1 1 1
0 100 200 300 400 500 600
Generation

Figure 7: Average best fitness

J T
Average fitness (trigger)
Average fithess -------

Fitness

1
300 400
Generation

600

Figure 8: Average fitness

5 Resources

The work presented in this paper is available
online at

http://www.daimi.au.dk/” maniac/ToEC/triggerEA.tgz
and an online Postscript document of this pa-
per is available at

http://www.daimi.au.dk/~ maniac/ToEC/triggerEA.ps

To run the program with our extension en-
abled you should type something similar to
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25

Deviation (t‘ngger)
Dovid

eviation -------

Fitness

0 100 200 300 400 500 600
Generation

Figure 9: Deviation of the average fitness

java -Xmx128m PMmain -benchmark DynamicDeJongsF1
-diversity fitness -uu 1.0 -ul 0.0 -su 5.0

-s1 2.0 -pu 0.1 -ps 0.6 -popsize 150 -width 15
-height 15 -generations 600 -iterations 25

6 Conclusions

In this paper we have presented a technique
for maintaining diversity in evolutionary algo-
rithms. The main reason for the loss of di-
versity can be identified as side effect of the
high selection pressure which is needed due
to the fact that evolutionary algorithms have
to evolve good solutions within an acceptable
time frame.

We think that the results presented in this
paper motivate for the usage of diploid chro-
mosomes as a way to overcome the lack of di-
versity in evolutionary algorithms in general.
To prove this point we should study the effect
of using diploid chromosomes in a wide variety
of evolutionary algorithms.

The functions we have used as a basis for
our experiments were all cyclic and abruptly
changing and we find it interesting to study
how the described technique would perform on
non-cyclic problems as well.

Finally, we find that there need to be done
further investigations into the field of how best

to measure diversity for evolutionary algorithms.

The diversity measure based on gene values
briefly discussed in this paper did not work
well and we had to fall back to the well known
measure for diversity based on fitness using the

statistical tool of standard deviation. Perhaps
deeper study into the field of biology would
point in a useful direction.
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Tuning tournament selection for Evolutionary
Algorithms

Uffe Bolsing

Abstract— It can be expected, that a mi-
nor variation in the implementation of the
tournement selection operator, can have sig-
nificant effect, on the performance of a ge-
netical algorithm. This paper describes, a
emperically examination of 3 different im-
plementation, of the tournament selection.
The paper tries to eamine emperically, what
implementation is best. The 3 different pro-
cedures of tournament selection examined
is:

1. Both individual in tournament is se-

lected by random.

2. Only one individual is selected by ran-
dom.

3. Mutation, crossover and selection is all
done in parallel. The principle here is,
that if mutation or crossover gives a
fitter individual then keep that indi-
vidual.

All three variants, can be implemented in a
given Evolutionary Algorithms. The emper-
ically study described in this paper, shows
that for the chosen benchmark problemes,
and the chosen genetic algorithms, variant
2 is superior for all, but one of the tested
bench mark problemes.

1 Introduction

A methodological problem, in the field of Evo-

lutionary Computation, is the enourmously num-

ber of different possibily of implementations
for Evolutionare algorithm. The general de-
scription, of a evolutionare algorithm, is namely
rather vague, and leaves a great deal up to the

programmer implementating the algorithm. That

even though minor variationes, can influence
the performance of the algorithm enormously.
Here we tries to examine which implementa-
tion of tournament selection is best, so the
programmer has some guidelines when con-
structing a given EA, and he dont have to,
just choosing how to implement the selection
operator by random. This paper will not just

examine which implementation is the best, but
also shed some light on how much, the different
implementations influence on the performance
of EA. To do the experiment we have to se-
lect a algorithm and some benchmark prob-
lems. Here 7 rather different benchmark prob-
lemes is examined, but unfurtunately only one
algoritms is examined.

2 Model description

The following 3 different implementation vari-
ants, of the tournament selection, is examined:

e Variant 1: Both individuals for the tour-
nament selection is chosen by random.

1. double[] newpop=new Individual[popsize]

2. for(i=0;ijpopsize;i++){

3. Pick two random individuals I and
J.

4. Clone the best and put in newpopli];

5.}

6. pop=newpop; With this method we
further have to use elitism is, i.e
the best solution is stored before
crossover and mutation, and then
reinsert afterwards. This is to pre-
vent the currently best solution, to
be selected out. A disadvantage with
this method is, that even though
elitism is used, we still risk that the
2.best or 3.best.. is selected out, be-
cause some of the individuals dont
even get evaluatet in the selection
process, but are simply picked out
by random number generator. Fur-
thermore the extra use or random
number generator takes computing
time, and so does elitism. To imple-
ment elitism we also need and axuil-
laridatastructure, to store the elite
individuals individuals genes.
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e Variant 2: Here only one individual is
choosed by random

individual. We keep all good individuals, but
unfourtunately also all the bad, which didnt
got mutatet or crossed to a fitter individual.

- double[] newpop=new Individual [pOPSiZQ/}ariant 3 is actually quite different from 1 and

1
2. for(i=0;ijpopsize;i++){

3. Pick one random individual I.
4

. If T is better than newpopli], clone
I and overwrite newpopli]

5. 1

6. pop=newpop;

Variant 2 is easier to implement than

variant 3, because you have natural elitism,

this also makes the algoritm slightly faster
for the same number of evaluations. All
genes are evaluated in the selection pro-
cess, so the most fitt individuals are al-
most certain to remain after selection,
and the chance of having dublicated the
best genes, is as good as in variant 1.
This holding on, to the best genes, can
have the unfortunate side effect, that one
get stuck on a local optimum. So on a
problem with many local optimum, one
could naively think variant 1 is more effi-
cient. But on a more monotome problem
this variant is obiviosly very effective.

e Variant 3: In this variant we do muta-
tion, crossover and selection in parallel,
rather than in sequence:

1. double[] newpop=new Individual[popsize]

2. while(not done){

3. create mutationpop by mutation of
pop

4. create crossoverpop by crossover of
pop

5. for(i=0;ijpopsize;i++){

6. newpopli]= most fit of mutationpopli],

crossoverpopli] and popli]

7.}
8. pop=newpop;

9. )

The pricip here is, that we only keep the
individual created by crossover and mutation
if they are fitter, than the original individual.
On the other hand, we never dublicate a good

2. In 3 we dont even use a random genera-
tor for the selection proces. Unfortunately we
have to do more evaluations in the selections
process, because we now have to select the best
individual out of 3 individual, instead of out
of 2 individuals as in variant 2 and variant 3.
That is, in variantl and 2, we makes 2 eval-
uation to select one individual, but in variant
we have to make atleast 4 evaluation, to select
one individual. An interesting thing, about the
selection principle behind variant 3, is that it
in some way, actually reasembles the real bi-
ologi evolution more closely than do variant 1
and 2, because in real biologi individuals dont
get cloned. Also bad mutation is discarded di-
rectely in variant 3, likewise in biological con-
tekst a bad mutation might be cancer.

3 Description of the experimen-
tal setup

To do the experiment, we have to choose some
parameters. But it ought to be noted, that
have some other values of the parameters been
chosen, we might have got completely different
result. The parameters, are namely known to,
interference in complex ways.

The chosed parameters:

e Number of evalutions is fixed on 200000.

e Gaussian mutation operator, with vari-
able variance var(t)=1/(1+t).

e Probability for mutation is fixed on 0.75.
e Arithmetic crossover operator.

e Probability for crossover is fixed on 0.9.
e Population size is 100.

e Number of identically runs is 50. In the
initialisation of the population, all in-
dividuals are uniformely randomly dis-

tributed on the interval, given in the bench-

mark problem. For the last generation,
means and standard variantion is com-
puted over 50 identically runns.
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The tested benchmark problems:

Ackley F1 20D Intended usage:Hard test
for global optimization. The problems
contains ”"minimum rings” around the global
minima with almost the same fitness, as
the global mininimum. Problem details
Function:

f@) = 204+e—
20 x exp( 02*\/2 )/20))
20
eap(y(2 -7 2:)/20)
i=1
where

=30 < z; <30

Type:Minimization No. of minimas:More
than 1000 Optima radius:0.15

Griewank F1 20D Function:

f(@) = 1/4000 - Z —100)
cos(r1 — 100/\/1 +1)-
cos(xgg — 100/4/20 +1) + 1
where

—600 < z; <600
Type:Minimization

Rastrigin F1 20D Intended usage:Test of
multimodal on problems with extremely
many peaks. Problem details Function:

20
f(@) =200+ a7 — 10 cos(27z;)
=1

where

—5.12 < x; <5.12

Type:Minimization No. of maxima:More
than 50 No. of minima:More than 50 Op-
tima radius:0.2 Optima descriptions:The
minima are located near (0,0,...,0)

Rosenbrock F1 20D Function:
20

2(100 . \/Z‘l — Tj—1 " Tj—1

i=1

f(@) =

+yxi—1 — 1)
where
—100 < z; <100

Type:Minimization

Schaffer F6 Intended usage:Hard test for
global optimization. The problems con-
tains "minimum rings” around the global
minima with almost the same fitness as

the global minima. Problems details Func-
tion:

sin? <\/x2 + y2> -0.5

(14 0.001(22 + 32))?

f(z,y) =0.5

where

—100<z<y and —100<y <y

Type:Minimization No. of minimas:More
than 1

De Jong F4 30D Function:

30
f@=> af
i=1
where

—1.28 <z; <1.28

Dimensions:30 Type:Minimization No. of
minimas:1+ Optima radius:0.2 Known op-
timas:GMIN(0.0,0.0,...,0.0) Important:Only
5000 evaluation are used on the testrun

of Schaffer F6.

Ursem multimodal F8 20D Intended us-
age:Scalable testproblem where the peaks
are not located on axis-parallel lines. Prob-
lem details Function:

f@)2-cos(2-m- (x1- T2 ... - Ty))

n

—4- (D (i +17)

=1

+ (cos(2- - x;))

where
—5<r<5-5<y<5

Type:Maximization No. of maxima:Many
No. of minima:Many Optimum radius:0.2
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Optimum descriptions:The global max-
ima and most of the local maximas are
located, at one end of the search space.
Some of these maximas are hard to de-
tect. Known optima:GMAX(-1,-1,...,-1),
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Table 1: Values for last generation.

Function Variant Mean standard diviation
Ackley 1 4.47 1.41

2 3.56 1.35

3 4.63 1.09
Griewank 1 0.0480 0.163

2 0.0312 0.075

3 1.91 1.45
Rastrigin 1 8.83 3.24

2 8.15 2.76

3 9.15 3.61
Rosenbrock 1 76.2 113

2 48.4 96.3

3 412 1028
Schaffer 1 0.0145 0.0142

2 0.0151 0.0139

3 9.35E-5  3.53E-4
DeJong 1 3.76E-7  2.26E-6

2 4.30E-16 3.43E-16

3 3.46E-5  9.44E-5
Ursem multimodal | 1 2.25 0.0719

2 2.26 2.63E-4

3 -367 52.3

Table 2: Variant 1 is with both selection in-
dividuals chosed randomly. Variant 2 is with
one selection individual chosed random. Vari-
ant 3 is with mutation, crossover and selection

in parallel.
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4 Conclusions

Ackley: For this benchmark problem, variant
2 is a little better than variant 1 and variant 3.
It is also seen, that both variant 1 and variant
3 converge very fast to a optimum. Unfortu-
nately for many of the runns, the found opti-
mum is only local. Griewank: Variant 2 is a
little better than variantl, and variant 3 gives
very bad performance for griewank. Variant 3
gives a mean average best fitness at 1.91 where
variant gives 0.0480. Rastrigin: Variant 2 is
still a little better than variant 1. Variant 3
performs pretty good as well. But the perfor-
mance differences, is generally very small for
this benchmark problems Rosenbrock:Here
variant 2 converge to optimum much faster
than variant 1. Variant 3 performs very poor

compared to both variant 1 and variant 2. Schaf-

fer: For schaffer variant3 actually performs
pretty amasingly. I reaches a mean best fit-
ness at 9.35E-5 where, variant 1 reaches 0.0145
and variant 2 reaces 0.0151. This is the only
benchmark problems where variant 3 performs
best. This problem is characterized by it con-
tains minimum rings, around the global min-
ima with almost the same fitness as the global
minima. And indeed it is seen, that variant
2 and variant 1 converge too a best average
fitness around 0.015. Where variant actualy
goes for the global optimum. Variant 3 that
uses parallel mutation, crossover and selection,
is characterized by never throwing the best
solution away, but at the same time it also
keeps many of the worst individuals. That is it
keeps great diversity in its population, for this
benchmark problem that helps advoid prema-
ture convergence. DeJong:For this DeJong,
variant 2 performs much better than variant
1 and variant 3. Variant 1 and variant 3 per-
forms pretty equal. It is furthermore seen, that
at the lower generation variant 2 and 1 are all-
most equal, but at the last generation variant 2
is much better. The reason for this, is proably
that variant 2 evaluate all individuals in the
selection process, where variant 1 select some
individuals out by random. That is, variant 2
risks selecting some of the best fitt individuals
out. That, selecting the best individual out,
is naturally worse, the better individuals you
got. Ursem multimodal:Here variant 2 per-

formes alot better than variant 1 in terms of
standard diavation, but actually a little worse
in terms of best average fitness. Variant 3 per-
forms terrible for this problem. Variant 3 have
mean best fitness -367, where variant 2 have
2.26 and variant 1 have 2.25. For all bench-
mark: For all problems variant 2 performs
slightly better than 1. At the same time vari-
ant 2 is easier to implements because it has
natural elitism, so you dont have to code in
elitism. Variant 2 also involves less computa-
tional overhead by saving a random generator
operation, also the more precise solution you
want the more the reason to choose variant
2. From a teoretical point of view, it is not
suprisingly that variant 2 performs better than
variant 1, because in variant 2 we evaluate all
individuals and there by not only keep the best
individual, but also almost certain keepin the
2. 3. best solutions. One can say that
in variant 2 all individual is evaluatet atleast
once, where in variant 1 some genes dont even
get evaluated at all in the tournement selec-
tion, but are simply picked out by random. All
in all i simply dont see much use of variant 1,
because variant 2 for all the problems turney
out atleast as good as variant 1.

For all but the schaffer benchmark variant
3 performed much worse than 2 and 1. For the
Schaffer benchmark problem variant 3 actually
performed much better than 1 and 2. So for
special problems like Schaffer, with lots of lo-
cal optimums, variant 3 can be attractive. The
reason i think one ought to consider variant 3
is that for some problems variant 2 simply can
get stuck on the local optimum, where vari-
ant 3 keeps bad genes too, that can get one
out of the local optimum by crossover. The
result that variant generally performed worse
than variant 1 and 2, are not easily explaned.
But the fact that variant 1 and 2 can clone
the good individualls, proably helps them con-
verge faster than variant 3. A better solution
on problems like Schaffer than using variant 3,
might be to use a religion-based spatial model
for evolutionary algorithms, which also keep
better diversity of its population. One should
also bear in mind, that we only tested the 3 dif-
ferent tournamens selection implementations,
on one evolutionary algoritms.
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Combining particle systems with religion based EAs

Henrik Refslund

Abstract— Particle Systems is a simple
way to explore a continuous search space.
They require relatively few evaluations, and
they are simple to implement. The idea be-
hind this paper is to improve the computa-
tional power, by extending a standard parti-
cle system with a “Religion” concept similar
to that found in Religion Based Evolution-
ary Algorithms. The motivation is, that you
in this way get both a local and a global
frame of reference for each particle, with-
out having to keep track of the position of
particles relative to each other.

1 Introduction

The search spaces considered in this paper are
all continuous and real-valued. They can be in
any number of dimentions. It is assumed that
a search space is wrapped in such a way, that
if a particle moves out of the search space in
one direction, it reenters elsewhere in the same
direction.

There is no inherent obstacle against discrete
or unwrapped search spaces, but the imple-
mentation is prettier and more general this
way.

The standard particles system consists of a
number of particles. Each particle has a posi-
tion in the search space, and hence represents
a solution. If a total ordered fitness function is
assumed, each particle can be evaluated only
once per iteration for all comparion and se-
lection purposes. For each iteration of the al-
gorithm, a new position is calculated for all
particles, based on their current position and
velocity!”.

So, a particle is a gradually changing solu-
tion. In this way particle systems doesn’t differ
much from other search techniques such as lo-
cal search. How should the next position for
a particle be chosen? Inspired by local search,
one might ask for a hill climbing effect by pick-

7The velocity and position update functions are ex-
plained below

ing the best next position from the immidiate
neighborhood around the particle. This, how-
ever, will require knowledge of the surrounding
neighborhood.

The present model gets it’s strength from sim-
plicity. There is no local neighborhood con-
cept. Likewise, particles doesn’t sample their
surroundings when deciding on their next move.
This keeps the number of evaluations down at
exactly one pr. particle pr. iteration. This is
an important fact, since evaluations are often
the single most expensive operation in a real
life setting.

2 Model Description

A particle look like this:

Particle

b'q Current position

y Current velocity

P Best position
found by particle

religion

fitness

The only new field, compared to standard par-
ticle systems, is religion. All particles belong
to a religion, which serves as a local frame of
reference for that particle. A Particle object
might need other fields, such as the fitness in
the best position found so far(p) in order not
to introduce extra evaluations.

Besides the set of particles, the algorithm will
also need to keep track of information such as:
The global best solution (and the fitness at this
position).

The best position for each religion (and fit-
nesses).

The main algorithm can be sketched as:
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Generate random set of particles
while (!'domne) {
for all particles, p {
- Update velocity vector, p.y
- Update position, p.x
- p.fitness = Evaluate()
- Update best solutions
(for p, p’s religion, and globally)
b
if (some criteria) {
Convert a number of particles

}

2.1 The Velocity Update Function

This a quite important part of the algorithm.
In the standard particle system it looks like
this:

v = v + (own best - p) +
(neighborhood best - p)

In the present model, the velocity update func-
tion looks like:

v = v + (religion best - p)

In both cases a bit of random noise is added,
even though it is not explicitly stated. Also,
it is possible to multiply coefficients to each
term.

I wanted the particles of given religion to con-
verge towards a single (local) optimum in the
search space. As the figure 1 shows, taking in
both the “own best” position and the “religion-
wise best” position is a problem to this end.
The figure doesn’t show the current velocity
and noise, since both terms can be assumed
relatively small'®. It illustrates how a particle
would get stuck between its own best position
and the religionwise best position, since the
two vectors cancel each other out. This fear
was confirmed by experiments.

With the given velocity update function, the
particles of a religion will all cluster together
around the best position collectively known,

181t makes sense to set a upper limit on the velocity,
if you don’t want to just sample random positions.

Neighborhooh
best position

O

Own best
position

Figure 1: Stuck in the middle.

without any other need for information shar-
ing other than that mentioned above. Multi-
plying a large coefficient to the v-term, will
give a large clustering area, since particles will
be slow to change their direction when passing
the rel best position.

2.2 The Position Update Function

Not much work is needed here. Just move the
particle as indicated by the new velocity:

X=X4vVv

2.3 Convertion

After having updated all particles the algo-
rithm may convert a member of one religion to
another religion. This convertion should prob-
ably be based on the best fitnesses found by
the religions in question. This can be done in
constant time.

This step is similar to the selection process in
standard Evolutionary Algorithms. The effect
is, that a successful religion will attract more
members than one stuck at an unoptimal hill
(or valley, depending on maximization or min-
imization, respectively). In addition, a con-
verted particle will have to wander from it’s
current position to the position of it’s new re-
ligion, exploring the search space in between.
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3 Experimental Setup

3.1 Benchmark Problems

I’ve have developed the model with two differ-
ent types of search spaces in mind.

One, a search space consisting of a number
of peaks and valleys. Two, a search space
with slopes, ridges, flat areas, and even infea-
sible regions. It would be nice, if the model
works for both kinds of problems. I've put to-
gether two benchmark problems for this pur-
pose. Both benchmark problem are in two di-
mentions, since this makes it possible to visu-
alize the results:

f(x,y) = sin(z)+
sin(2 * sqrt(x? + y?)) + sin(y)
g(x,y) = 02x|zx—5/+0.5%xy+6, Ist quad

—sqrt(x?® + y?) + 14), 2nd quad
6, 3rd quadrant
0.2 % |z — 5| + 6, 4th quadrant

In addition, g(x, y) contains a few infeasi-
ble regions.

f(x, y) is shown in figure 2. Figure 3 shows
benchmark problem 4, except for the infeasible
regions. Benchmark 4 is a minimization prob-
lem, so the global optima is in quadrant 2 (at

(x, y) = (-10, 10)).

Figure 2: Benchmark problem, f(x,y).

The algorithm works quite well with both

kinds of benchmark problems. A religion/swarm

has the ability to climb along a ridge or up a

Figure 3: Benchmark problem, g(x,y).

slope (or down, as applicable). If a particle
enters an infeasible region nothing bad hap-
pens. It will just continue on it’s way towards
the religion best position. It can be discussed
whether this is an acceptable behavior: If all
particles of a religion is contained in the same
(maybe even convex) infeasible region, they
will probably not leave it, until thay are con-
verted one by one. This is of course a waste
of computation. However, a particle may need
to cross an infeasible region in order to get to
a better position.

3.2 Stages of the Algorithm

In general, a run of the algorithm, can be di-
vided into three stages:

e 1: Starting out, the particles are scat-
tered randomly across the search space.

e 2: After a while, each religion will clus-
ter around a hill.

e 3:  After many convertions, the best
fit religion will have converted all other
particles.

There are several parameters that influence
this behavior: The frequency and number of
conversions, the velocity update function, and
SO on.

4 Results

I've have run an implementation of the algo-
rithm on the above benchmark problems, and
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summarized the results below. The graphs
show averages of (1) average fitness of all par-
ticles, (2) average best fitness of religions, and
(3) overall best fitness.

In general, the overall best fitness improves in
small steps. The average fitness of all parti-
cles stays rather high, because some religions
stay at local optima, which are inferior to the
global optimum. Figure 4 shows the averages
of a number of runs with benchmark f(x,y).

\_ —— Average
. \\ Ay, Best of rel
2

Best of al

Fithess

Iteration

Figure 4: Benchmark 3.

If the number of religions is set to 1, the
algorithm will behave as a standard particle
system. Experimenting with this, it is my im-
pression, that the many-religions variant is less
likely to get stuck at suboptimal hills. Figure
5 shows the averages of a few runs.

i\
<
\

lteration

Fithess

W

Figure 5: A single religion.

In both examples the algorithm has run for
500 iterations. As can be seen, the best solu-
tion quickly stagnates. This corresponds to
the swarms settling on local optima.

5 Possible Improvements

I haven’t mentioned the mutation concept, found
in evolutionary algorithms. It could, however,
easily be applied to the model. For instance,
you could pick a particle and move it to a
new (random) position every once in a while.
As with convertions, the moved particle would
have to travel back to it’s swarm, exploring the
search space in between. As described above,
the only mutation is the noise added in the ve-
locity update function.

Another option, is to add temperature to the
system, as in simulated annealing. This tem-
perature, could then control parameters such
as the frequency and number of convertions,
the coefficients in the velocity update function
(average and max speed, inertia, ..).

6 Conclusions

The model seems to reduce the number of runs
getting stuck at suboptimal hills, compared to
a standard particle system. It is quite simple
to implement. It only requires a liniar amount
of space and keeps the number of evaluations
at a minimum. Apart from the evaluations
there are no heavy computations involved.
This simplicity comes at a cost. In the given
form, it can still produce mediocre results, even
if it runs for a long time (since it doesn’t escape
the final optimum without mutation). An-
other major drawback, which it shares with
many other EAs and the standard particle sys-
tem, is the high number of parameters. With
a bad combination af these parameters, it will
be likely to perform poorly.



